期刊文献+
共找到5,041篇文章
< 1 2 250 >
每页显示 20 50 100
Biostratigraphy of the Abderaz Formation Based on Heterohelicids, at Six Stratigraphical Sections in East and Center of the Kopeh-Dagh Sedimentary Basin, Northeastern of Iran
1
作者 Mohammad Vahidinia Meysam Shafiee Ardestani 《International Journal of Geosciences》 2017年第4期623-645,共23页
In this study, Abderaz Formation at six stratigraphical sections, in east and center of the Kopeh-Dagh sedimentary basin, has been investigated, based on biserial planktonic foraminifera. Totally, 831 samples, with 3 ... In this study, Abderaz Formation at six stratigraphical sections, in east and center of the Kopeh-Dagh sedimentary basin, has been investigated, based on biserial planktonic foraminifera. Totally, 831 samples, with 3 meter distance, were gathered from a sequence with 2800 meter thickness. Also 4 genera and 17 species of biserial planktonic foraminifera have been identified and two biozones and two subzones recognized. Based on obtained data, the age of Early Turonian-Earliest Campanian for the Padeha, Abderaz village and Shorab sections, Midle Turonian-Earliest Campanian for type section, Early Turonian-Late Santonian for Qarehso section and Early Turonian-Earliest Santonian for Hajgelichkhan section were determined. The least amount of plank-tonic foraminifera was identified at Hajgelichkhan, while the maximum amount recognized at Qarehso section. 展开更多
关键词 kopeh-dagh sedimentary basin Abderaz FORMATION BIOSTRATIGRAPHY Serial PLANKTONIC FORAMINIFERA
在线阅读 下载PDF
Hydrothermal Control by Deep Hidden Faults on Geothermal Systems in Sedimentary Basins:A Case Study of the Cangdong Fault in the North China Basin
2
作者 YIN Xiaoxiao LIN Jianwang +5 位作者 LI Hu LI Huanqing DONG Lufei YAN Jiaxian ZHANG Sen LI Zheng 《Acta Geologica Sinica(English Edition)》 2025年第1期243-257,共15页
Large basins are currently the global focus for geothermal development,with their hydrothermal system being controlled by a variety of factors,such as basement relief and fracture development.Donglihu is located at th... Large basins are currently the global focus for geothermal development,with their hydrothermal system being controlled by a variety of factors,such as basement relief and fracture development.Donglihu is located at the north of the Cangxian uplift in the North China Basin,the concentrated geothermal resource development zone in North China.This study systematically collects temperature logging data and long-term dynamic monitoring of water level and water quality as well as group well tracer test data carried out in this area in recent years,on the basis of which the hydrothermal controlling role of the deep hidden faults is systematically analyzed.The results show that the Cangdong fault communicates with different geothermal reservoirs in the shallow part and plays a specific role in the water-heat channel of the local area.As a result,the high-value area of the geothermal temperature gradient in the sedimentary layer of the Donglihu area is distributed around the Cangdong fault.The geothermal reservoir temperature of the Minghuazhen Formation within the influence of the fault is also significantly higher than the regional average,the hydraulic head of different geothermal reservoirs showing a consistent and synergistic trend.However,the water quality has been stable for many years without any apparent changes.This understanding has a particular significance for further deepening understanding of the geothermal genesis mechanism in sedimentary basins and guiding future geothermal exploration and development in the Donglihu area. 展开更多
关键词 sedimentary basin geothermal system hidden fault hydrothermal channel Cangdong fault
在线阅读 下载PDF
Callovian-Oxfordian sedimentary microfacies in the middle of Block B on the right bank of the Amu Darya Basin,Turkmenistan
3
作者 Chongyang Wu Chuanjie Cheng +2 位作者 Liangjie Zhang Bingsong Yu Hongjun Wang 《Energy Geoscience》 EI 2024年第2期249-262,共14页
The right bank of the Amu Darya Basin enjoys abundant natural gas resources,on which the Callovian-Oxfordian strata in the middle of Block B serve as the major horizons for natural gas production.However,the character... The right bank of the Amu Darya Basin enjoys abundant natural gas resources,on which the Callovian-Oxfordian strata in the middle of Block B serve as the major horizons for natural gas production.However,the characteristics and distribution patterns of the sedimentary microfacies in these strata are yet to be further explored.Based on the analysis of data on drilling,logging,cores,and thin sections from 29 typical wells,as well as the regional sedimentary background,this study inferred that the middle of Block B evolved from the Callovian ramp platform into the Oxfordian rimmed platform.Moreover,this study determined that the inner-ramp intertidal-subtidal shallow-water subfacies mainly developed during the Callovian and transitioned into the shallow shelf subfacies during the Oxfordian.This study identified eight sedimentary microfacies,namely reef knoll,reef-shoal complex,bioclastic shoal,psammitic shoal,bioherm,lime mud mound,intershoal(intermound),and static-water mud.Based on research into the high-precision sequence-sedimentary microfacies framework,this study built a geological model for the development of sedimentary microfacies in the study area.According to this geological model,the sedimentary microfacies in the study area are characterized by vertical alternation of reef-shoal complex,bioclastic(psammitic)shoal,bioherm,and intershoal microfacies.Moreover,they show the development of reef knoll,reef-shoal complex,bioclastic(psammitic)shoal,and bioherm(or lime mud mound)laterally from west to east,with the physical properties of the reservoirs deteriorating from west to east accordingly.The microfacies of reef-shoal complex and the bioclastic(psammitic)shoal predominate in the study area,and their deposition and development are controlled by sequence boundaries and are also affected by paleo-landforms.The Oxfordian reef-shoal complexes were largely inherited from the Callovian uplifts and show lateral seaward progradation. 展开更多
关键词 Carbonate rock sedimentary microfacies Evolutionary pattern JURASSIC Amu Darya basin Turkmenistan
在线阅读 下载PDF
Prediction of favorable geological storage areas based on sedimentary characteristics:A case study on the northeastern Ordos Basin,China
4
作者 Yue Zhao Qiang Xu +6 位作者 Song Du Yang Zhang Tengzhuo Zhang Yinglin Fan Yan Ding Sitong Song Xinxin Feng 《Energy Geoscience》 EI 2024年第4期187-197,共11页
The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mi... The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage. 展开更多
关键词 Ordos basin Liujiagou Formation sedimentary facies Sequence stratigraphy Geological storage
在线阅读 下载PDF
Sedimentary systems of the Oligocene Huagang Formation in the central anticline zone of the Xihu Depression,East China Sea Shelf Basin
5
作者 Wenbo Zheng Guofeng Yin +3 位作者 Li Sun Shuijian Wei Xiuping Wei Bo Niu 《Energy Geoscience》 EI 2024年第1期275-282,共8页
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F... The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression. 展开更多
关键词 Estuary sedimentary system Oligocene Huagang Formation Central anticline Xihu Depression East China Sea Shelf basin
在线阅读 下载PDF
Application of 9-component S-wave 3D seismic data to study sedimentary facies and reservoirs in a biogasbearing area:A case study on the Pleistocene Qigequan Formation in Taidong area,Sanhu Depression,Qaidam Basin,NW China
6
作者 XU Zhaohui LI Jiangtao +4 位作者 LI Jian CHEN Yan YANG Shaoyong WANG Yongsheng SHAO Zeyu 《Petroleum Exploration and Development》 SCIE 2024年第3期647-660,共14页
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four... To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area. 展开更多
关键词 9-component S-wave 3D seismic data seismic sedimentology biogas sedimentary facies reservoir Qaidam basin Sanhu Depression Pleistocene Qigequan Formation
在线阅读 下载PDF
Control and prediction of bedding-parallel fractures in fine-grained sedimentary rocks:A case from the Permian Lucaogou Formation in Jimusar Sag,Junggar Basin,Western China
7
作者 Zhao-Hui Zhang Teng Zhang +2 位作者 Hua-Qing Liu Xiang-Bo Li Duo-Nian Xu 《Petroleum Science》 CSCD 2024年第6期3815-3838,共24页
The fine-grained sedimentary rocks have numerous bedding-parallel fractures that are essential for the migration,enrichment,and efficient development of oil and gas.However,because of their variety and the complexity ... The fine-grained sedimentary rocks have numerous bedding-parallel fractures that are essential for the migration,enrichment,and efficient development of oil and gas.However,because of their variety and the complexity of the factors that affect them,their spatial prediction by the industrial community becomes challenging.Based on sample cores,thin sections,and well-logging and seismic data,this study employed a multi-scale data matching approach to quantitatively predict the development of bedding-parallel fractures and investigate their spatial distribution.Bedding-parallel fractures in the Lucaogou Formation in Jimusar Sag frequently occur along preexisting bedding planes and lithological interfaces.Unfilled bedding-parallel fractures inside or near source-rocks exhibit enhanced oil-bearing capacity.They were identified on micro-resistivity scanning images by the presence of regularly continuous black or nearly black sinusoidal curves.Overall,the developmental degree of bedding-parallel fractures was positively related to the brittle mineral and total organic carbon contents and negatively related to single reservoir interval thickness.The maintained porosity of the reservoir matrix contributed to a thorough response to factors affecting the development of bedding-parallel fractures.Here,an effective and objective method was proposed for predicting the development and distribution of bedding-parallel fractures in the fine-grained sedimentary rocks.The method was based on the matched reservoir interval density,reservoir interval density,and matched sweet spot density of bedding-parallel fractures.The prediction method integrated the significant advantages of high vertical resolution from logging curves and strong lateral continuity from seismic data.The average relative prediction error was 8%in the upper sweet spot in the Lucaogou Formation,indicating that the evaluation parameters for bedding-parallel fractures in fine-grained sedimentary rocks were reasonable and reliable and that the proposed prediction method has a stronger adaptability than the previously reported methods.The workflow based on multi-scale matching and stepwise progression can be applied in similar fine-grained sedimentary rocks,providing reliable technological support for the exploration and development of hydrocarbons. 展开更多
关键词 Bedding-parallel fractures Fine-grained sedimentary rocks Multiscale matching Quantitative prediction Lucaogou formation Junggar basin
在线阅读 下载PDF
Investigation of the Petrological and Geochemical Characteristics of Siderite in the Early Cretaceous Sandstone of Lacustrine Sedimentary Sequence in the Erlian Basin from Northeastern China
8
作者 Yunlong Zhang Mingming Tian +3 位作者 Huili Xie Xide Li Wusheng Liu Shiqi Ni 《Journal of Geoscience and Environment Protection》 2024年第6期305-321,共17页
Siderite is a prevalent authigenic mineral in siliciclastic rocks, which usually occurred in eodiagensis period and could be used as an indicator of sedimentary environment. Some siderite precipitated in burial depth ... Siderite is a prevalent authigenic mineral in siliciclastic rocks, which usually occurred in eodiagensis period and could be used as an indicator of sedimentary environment. Some siderite precipitated in burial depth with geochemical information of basin fluid evolution. The crystal morphology, geochemical composition, and isotope values are influenced by physical and geochemical environment of precipitation. In this study, samples from the Early Cretaceous of Erlian basin in the northwestern China were collected, and mineralogy, bulk and in-situ geochemistry, C and O isotopes were analyzed to comprehensively investigate the sedimentary and diagenetic environment that the sediments experienced. Six lithofaices with three types of crystal habits were recognized in the siderite-rich sandstone, bundle crystal in spherical forms, blocky rhombs in intergranular pore and cleavage of muscovite, and micro bundle and mosaic crystals aggregates in nodular. The siderite growth proceeds through micro bundle and mosaic crystals to bundle siderite aggregates and then into blocky rhombs. The crystal evolution is also reflected by geochemical composition. The micro bundle and mosaic crystals are Casiderite. The spheritic shaped bundle aggregates are Ca-Mn-siderite. The blocky rhomb siderite shows gray part and bight part with Ca, Mg and Mn varies. Increase of Ca in block rhomb siderite suggests burial and mesodiagenesis, the high content of Mn may have linkage with eogenetic effects. The relatively positive and slightly negative δ13C value indicates meteoric water domination and influence of organic matter evolution in shallow buried time. The narrow ranges negative δ18O value suggest a small span of temperature of siderite formation. 展开更多
关键词 SIDERITE sedimentary Environment Lacustrine Deposition Early Cretaceous Erlian basin
在线阅读 下载PDF
Lithofacies types,sedimentary cycles,and facies models of saline lacustrine hybrid sedimentary rocks:A case study of Neogene in Fengxi area,Qaidam Basin,NW China
9
作者 SONG Guangyong LIU Zhanguo +7 位作者 WANG Yanqing LONG Guohui ZHU Chao LI Senming TIAN Mingzhi SHI Qi XIA Zhiyuan GONG Qingshun 《Petroleum Exploration and Development》 2024年第6期1507-1520,共14页
The saline lacustrine hybrid sedimentary rocks are complex in lithology and unknown for their sedimentary mechanisms.The hybrid sedimentary rocks samples from the Neogene upper Ganchaigou Formation to lower Youshashan... The saline lacustrine hybrid sedimentary rocks are complex in lithology and unknown for their sedimentary mechanisms.The hybrid sedimentary rocks samples from the Neogene upper Ganchaigou Formation to lower Youshashan Formation(N_(1)-N_(2)^(1))in the Fengxi area Qaidam Basin,were investigated through core-log and petrology-geochemistry cross-analysis by using the core,casting thin section,scanning electron microscope,X-ray diffraction,logging,and carbon/oxygen isotopic data.The hybrid sedimentary rocks in the Fengxi area,including terrigenous clastic rock and lacustrine carbonate rock,were deposited in a shallow lake environment far from the source,or occasionally in a semi-deep lake environment,with 5 lithofacies types and 6 microfacies types recognized.Stable carbon and oxygen isotopic compositions reveal that the formation of sedimentary cycles is controlled by a climate-driven compensation-undercompensation cyclic mechanism.A sedimentary cycle model of hybrid sedimentary rocks in an arid and saline setting is proposed.According to this model,in the compensation period,the lake level rises sharply,and microfacies such as mud flat,sand-mud flat and beach are developed,with physical subsidence as the dominant sedimentary mechanism;in the undercompensation period,the lake level falls slowly,and microfacies such as lime-mud flat,lime-dolomite flat and algal mound/mat are developed,with chemical-biological process as the dominant sedimentary mechanism.In the saline lacustrine sedimentary system,lacustrine carbonate rock is mainly formed along with regression,the facies change is not interpreted by the accommodation believed traditionally,but controlled by the temporary fluctuation of lake water chemistry caused by climate change.The research results update the interpreted high-resolution sequence model and genesis of hybrid sedimentary rocks in the saline lacustrine basin and provide a valuable guidance for exploring unconventional hydrocarbons of saline lacustrine facies. 展开更多
关键词 Qaidam basin Fengxi area hybrid sedimentary rock lithofacies cycle facies model saline lacustrine
在线阅读 下载PDF
Episodic thrusting and sequence-sedimentary responses and their petroleum geological significance in Kuqa foreland basin,NW China
10
作者 YANG Haijun HU Suyun +8 位作者 YANG Xianzhang HU Mingyi XIE Huiwen ZHANG Liang LI Ling ZHOU Lu ZHANG Guowei LUO Haoyu DENG Qingjie 《Petroleum Exploration and Development》 2024年第6期1451-1464,共14页
This study integrates field outcrop profiles,drilling cores,2D seismic profiles,and 3D seismic data of key areas to analyze the Triassic tectonic-sequence stratigraphy in the Kuqa foreland basin,and investigates the i... This study integrates field outcrop profiles,drilling cores,2D seismic profiles,and 3D seismic data of key areas to analyze the Triassic tectonic-sequence stratigraphy in the Kuqa foreland basin,and investigates the impact of episodic thrust structures on sedimentary evolution and source rock distribution.(1)The Kuqa foreland basin has experienced stages of initial strong,weakened activities,relaxation and inactivity of episodic thrusting,resulting in the identification of 4 second-order sequences(Ehebulake Formation,Karamay Formation,Huangshanjie Formation,Taliqike Formation)and 11 third-order sequences(SQ1-SQ11)in the Triassic strata.Each sequence or secondary sequence displays a“coarse at the bottom and fine at the top”pattern due to the influence of secondary episodic thrust activity.(2)The episodic thrusting is closely linked to regional sequence patterns,deposition and source rock formation and distribution.The sedimentary evolution in the Triassic progresses from fan delta to braided river delta,lake,braided river delta,and meandering river delta,corresponding to the initial strong to the inactivity stages of episodic thrusting.The development stage of thick,coarse-grained sandy conglomerate reservoirs aligns with the strong to weakened thrust activities,while the source rock formation period coincides with the relaxation to inactivity stages.(3)Controlled by the intensity and stages of episodic thrust activity,the nearly EW trending thrust fault significantly thickened the footwall source rock during the Huangshanjie Formation,becoming the development center of Triassic source rock,and experienced multiple overthrust nappes in the soft stratum of the source rock,showing“stacked style”distribution.(4)The deep layers of the Kuqa foreland basin have the foundation and conditions necessary for the formation of substantial gas reservoirs,capable of forming various types of reservoirs such as self-generating and self-storing lithology,lower generating and upper storing fault block-lithology,and stratigraphic unconformity.This area holds significant importance for future gas exploration efforts aimed at enhancing reserves and production capabilities. 展开更多
关键词 KUQA foreland basin TRIASSIC episodic thrusting sequence stratigraphy sedimentary evolution source rock gas reservoir types
在线阅读 下载PDF
Tectonic transition from the Paleo-Asian Ocean to the Paleo- Pacific Ocean: insights from volcano-sedimentary rocks in NE China
11
作者 MENG Weihao WANG Hongyan ZHOU Jianbo 《Global Geology》 2025年第1期11-34,共24页
Since the Paleozoic,the tectonic evolution of northeastern Eurasia has been primarily influenced by the Paleo-Asian Ocean and the Paleo-Pacific tectonic domains.However,the spatial and temporal frameworks,as well as t... Since the Paleozoic,the tectonic evolution of northeastern Eurasia has been primarily influenced by the Paleo-Asian Ocean and the Paleo-Pacific tectonic domains.However,the spatial and temporal frameworks,as well as the timing of the tectonic transition between these two oceanic domains,remain unclear.For addressing these issues,we present petrological,geochronological,and geochemical data for andesite and sandstone samples from the Seluohe Group along the Jilin-Yanji Suture between the Jiamusi-Khanka Block and the North China Craton.The geochemical results indicate that the andesite sample is high-Mg andesite.Its magma source was generated by the metasomatized mantle wedge influenced by fluids derived from the subducted slab in a continental island arc setting.The high-Mg andesite gives the crystallization ages of Early Triassic(249±3 Ma).The sandstone is immature greywacke with a maximum depositional age of Early Triassic(247±1 Ma),and its sediments primarily originate from concurrent magmatic rocks within a juvenile continental arc.Based on our new findings,we propose that the Seluohe Group represents an Early Triassic volcanic-sedimentary association with continental island arc characteristics associated with the southwestward subduction of the Heilongjiang Ocean.We identified a sedimentary basin intimately associated with one or more continental arcs along the northeastern edge of the North China Craton.We suggest that the southwestward subduction of the Jilin-Heilongjiang Ocean in the Early Mesozoic accounts for this continental arc setting.There is a distinct temporal gap between the closure of the Paleo-Asian Ocean(ca.260 Ma)and the onset of Paleo-Pacific plate subduction(234–220 Ma),which is essentially coeval with the southwestward subduction of the Jilin-Heilongjiang Ocean between 255 Ma and 239 Ma. 展开更多
关键词 High-Mg andesite sedimentary basin Early Mesozoic Jilin-Heilongjiang Ocean tectonic transition in northeastern Eurasia
在线阅读 下载PDF
Origin and distribution model of thin dolomite reservoirs in the lower sub-member of Mao 2 Member of Middle Permian Maokou Formation in Wusheng-Tongnan area,Sichuan Basin,SW China
12
作者 TAN Xiucheng HE Ruyi +7 位作者 YANG Wenjie LUO Bing SHI Jiangbo ZHANG Lianjin LI Minglong TANG Yuxin XIAO Di QIAO Zhanfeng 《Petroleum Exploration and Development》 2025年第1期125-142,共18页
This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation(lower Mao 2 Member)in the Wusheng-Tongnan area o... This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation(lower Mao 2 Member)in the Wusheng-Tongnan area of the Sichuan Basin,SW China,through comprehensive analysis of geological,geophysical and geochemical data.The reservoir rocks of the lower Mao 2 Member are dominated by porphyritic vuggy dolomite and calcareous dolomite or dolomitic limestone,which have typical karst characteristics of early diagenetic stage.The dolomites at the edge of the karst system and in the fillings have dissolved estuaries,and the dolomite breccia has micrite envelope and rim cement at the edge,indicating that dolomitization is earlier than the early diagenetic karstification.The shoal facies laminated dolomite is primarily formed by the seepage reflux dolomitization of moderate-salinity seawater.The key factors of reservoir formation are the bioclastic shoal deposition superimposed with seepgae reflux dolomitization and the karstification of early diagenetic stage,which are locally reformed by fractures and hydrothermal processes.The development of dolomite vuggy reservoir is closely related to the upward-shallowing sequence,and mainly occurs in the late highstand of the fourth-order cycle.Moreover,the size of dolomite is closely related to formation thickness,and it is concentrated in the formation thickness conversion area,followed by the thinner area.According to the understanding of insufficient accommodation space in the geomorphic highland and the migration of granular shoal to geomorphic lowland in the late highstand of the third-order cycle,it is proposed that the large-scale shoal-controlled dolomite reservoirs are distributed along structural highs and slopes,and the reservoir-forming model with shoal,dolomitization and karstification jointly controlled by the microgeomorphy and sea-level fluctuation in the sedimentary period is established.On this basis,the paleogeomorphology in the lower Mao 2 Member is restored using well-seismic data,and the reservoir distribution is predicted.The prediction results have been verified by the latest results of exploration wells and tests,which provide an important reference for the prediction of thin dolomite reservoirs under similar geological setting. 展开更多
关键词 reservoir origin sedimentary paleogeomorphology granular shoal thin reservoir DOLOMITE vuggy reservoir KARST Middle Permian Maokou Formation Sichuan basin
在线阅读 下载PDF
Carboniferous-Early Permian heterogeneous distribution of porous carbonate reservoirs in the Central Uplift of the South Yellow Sea Basin and its hydrocarbon potential analysis
13
作者 Shu-yu Wu Jun Liu +4 位作者 Jian-wen Chen Qi-liang Sun Yin-guo Zhang Jie Liang Yong-cai Feng 《China Geology》 2025年第1期58-76,共19页
Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbon... Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide. 展开更多
关键词 sedimentary Heterogeneous porous carbonate reservoirs C-H-Sr isotope analysis Carboniferous-Early Permian Chuanshan Formation Huanglong Formation Pre-stack simultaneous inversion technique Oil-gas exploration engineering Hydrocarbon accumulation Hydrocarbon potential Central Uplift of the South Yellow Sea basin
在线阅读 下载PDF
The Cretaceous Songliao Basin:Volcanogenic Succession,Sedimentary Sequence and Tectonic Evolution,NE China 被引量:41
14
作者 WANG Pujun XIE Xiao'an +3 位作者 Mattem FRANK REN Yanguang ZHU Defeng SUN Xiaomeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第6期1002-1011,共10页
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and ep... The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin. 展开更多
关键词 Cretaceous superposed Songliao basin volcanic rocks sedimentary sequence tectonicevolution Mongolia-Okhotsk collisional belt Pacific and Eurasian plates retroarc strike-slip tectonicinverse basins
在线阅读 下载PDF
Basic Types and Structural Characteristics of Uplifts:An Overview of Sedimentary Basins in China 被引量:20
15
作者 HE Dengfa LI Desheng +1 位作者 WU Xiaozhi WEN Zhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第2期321-346,共26页
The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhi... The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhile, it is the very place to store important minerals like oil, natural gas, coal and uranium. Giant and large-scale oil and gas fields in China, such as the Daqing Oilfield, Lunnan-Tahe Oilfield, Penglai 19-3 Oilfield, Puguang Gas Field and Jingbian Gas Field, are developed mainly on uplifts. Therefore, it is the main target both for oil and gas exploration and for geological study. The uplift can be either a basement uplift, or one developed only in the sedimentary cover. Extension, compression and wrench or their combined forces may give rise to uplifts. The development process of uplifting, such as formation, development, dwindling and destruction, can be taken as the uplifting cycle. The uplifts on the giant Precambrian cratons are large in scale with less extensive structural deformation. The uplifts on the medium- and small-sized cratons or neo-cratons are formed in various shapes with strong structural deformation and complicated geological structure. Owing to changes in the geodynamic environment, uplift experiences a multi-stage or multi-cycle development process. Its geological structure is characterized in superposition of multi-structural layers. Based on the basement properties, mechanical stratigraphy and development sequence, uplifts can be divided into three basic types-the succession, superposition and destruction ones. The succession type is subdivided into the maintaining type and the lasting type. The superposition type can be subdivided into the composite anticlinal type, the buried-hill draped type, the faulted uplift type and the migration type according to the different scales and superimposed styles of uplifts in different cycles. The destruction type is subdivided into the tilting type and the negative inverted type. The development history of uplifts and their controlling effects on sedimentation and fluids are quite different from one another, although the uplifts with different structural types store important minerals. Uplifts and their slopes are the main areas for oil and gas accumulation. They usually become the composite oil and gas accumulation zones (belts) with multiple productive formations and various types of oil and gas reservoirs. 展开更多
关键词 UPLIFT geological structure structural type continental dynamics oil and gasaccumulation sedimentary basin China
在线阅读 下载PDF
Cenozoic uplift of the Tibetan Plateau:Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin 被引量:25
16
作者 Yadong Wang Jianjing Zheng +4 位作者 Weilin Zhang Shiyuan Li Xingwang Liu Xin Yang Yuhu Liu 《Geoscience Frontiers》 SCIE CAS 2012年第2期175-187,共13页
Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has re... Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau. 展开更多
关键词 Western Qaidam basin sedimentary facies Depositional depressionTectonic evolution Tibetan Plateau uplift
在线阅读 下载PDF
Sedimentary and geochemical characteristics of the Triassic Chang 7 Member shale in the Southeastern Ordos Basin,Central China 被引量:11
17
作者 Jing-Wei Cui Ru-Kai Zhu +1 位作者 Zhong Luo Sen Li 《Petroleum Science》 SCIE CAS CSCD 2019年第2期285-297,共13页
The Ordos Basin is the largest petroliferous basin in China, where the Chang 7 Member shale serves as the major source rock in the basin, with an area of more than 100,000 km^2 So far, sedimentary and geochemical char... The Ordos Basin is the largest petroliferous basin in China, where the Chang 7 Member shale serves as the major source rock in the basin, with an area of more than 100,000 km^2 So far, sedimentary and geochemical characterizations have rarely been conducted on the shale in shallow(< 1000 m) areas in the southeastern part of the basin, but such characterizations can help identify the genesis of organic-rich shale and promote the prediction and recovery of shale oil. In this paper,several outcrop sections of the Chang 7 Member in the Tongchuan area were observed and sampled, and sedimentary and geochemical characterizations were conducted for the well-outcropped YSC section. The study results show that the Chang7 Member shale is widely distributed laterally with variable thickness. The organic-rich shale is 7-25 m thick in total and exhibits obvious horizontal variation in mineral composition. In the eastern sections, the shale contains organic matter of TypeⅡ_2-Ⅲ and is low in thermal maturity, with high clay mineral content, low K-feldspar content, and no pyrite. In the western sections, the shale contains Type Ⅱ_1 organic matter and is low in thermal maturity, with high clay mineral, K-feldspar, and pyrite contents. The YSC section reveals three obvious intervals in vertical mineral composition and organic abundance.The Chang 7 Member organic-rich shale(TOC > 10%) contains mainly sapropelite and liptinite, with Type Ⅱ kerogen. It is generally characterized by a hydrocarbon potential of more than 70 mg/g, low maturity, and shallow-semideep lacustrine facies. In the western sections, the shale, still in a low maturity stage, has a higher hydrocarbon potential and is optional for shale oil recovery. However, the Chang 7 Member shale in the study area is highly heterogeneous and its shale oil recovery is practical only in the organic-rich intervals. 展开更多
关键词 ORDOS basin CHANG 7 MEMBER oil Organic-rich SHALE sedimentary CHARACTERISTICS Geochemical CHARACTERISTICS
在线阅读 下载PDF
Sedimentary facies and depositional model of shallow water delta dominated by fluvial for Chang 8 oil-bearing group of Yanchang Formation in southwestern Ordos Basin,China 被引量:12
18
作者 陈林 陆永潮 +5 位作者 吴吉元 邢凤存 刘璐 马义权 饶丹 彭丽 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4749-4763,共15页
A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data an... A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones. 展开更多
关键词 sedimentary facies architectural element DEPOSITIONAL model shallow water delta CHANG 8 oil-bearing GROUP ORDOS basin
在线阅读 下载PDF
Intracontinental Collisional Orogeny During Late Permian-Middle Triassic in South China: Sedimentary Records of the Shiwandashan Basin 被引量:12
19
作者 LIANGXinquan LIXianhua QIUYuanxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期756-762,共7页
Sedimentary response to an orogenic process is important for determining whether South China had compressional or extensional orogeny during the period from the Late Permian to the Middle Triassic besides the tectonic... Sedimentary response to an orogenic process is important for determining whether South China had compressional or extensional orogeny during the period from the Late Permian to the Middle Triassic besides the tectonic and magmatologic evidence. An intracontinental collision event took place between the Yangtze and Cathaysia blocks in the Late Permian. Beginning at the Late Triassic, the tectonic movement was completely changed in nature and entered a post-collisional extensional orogenic and basin-making process. This paper presents sedimentological evidence from the Late Permian to the Middle Triassic in the Shiwandashan basin at the southwestern end of the junction zone between the Yangtze and Cathaysia blocks. 展开更多
关键词 Shiwandashan basin intracontinental collisional orogeny sedimentary record Late Permian to Middle Triassic South China.
在线阅读 下载PDF
Biodegradation and origin of oil sands in the Western Canada Sedimentary Basin 被引量:8
20
作者 Zhou Shuqing Huang Haiping Liu Yuming 《Petroleum Science》 SCIE CAS CSCD 2008年第2期87-94,共8页
The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits th... The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs. 展开更多
关键词 Western Canada sedimentary basin (WCSB) oil sands BIODEGRADATION MIXING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部