Simple and efficient stereo-selective synthesis of exo-5-norbornene-2-carboxylic acid (NBCA) is reported. Preliminary studies on base promoted isomerization of methyl 5-norbornene-2-carboxylate (MNBC) revealed that ra...Simple and efficient stereo-selective synthesis of exo-5-norbornene-2-carboxylic acid (NBCA) is reported. Preliminary studies on base promoted isomerization of methyl 5-norbornene-2-carboxylate (MNBC) revealed that rapid isomerization was accomplished with sodium tert-butoxide (tBuONa), and the exo-content at the equilibrium was ca. 60%. The hydrolyses of endo-rich MNBC (endo/exo = 80/20) under various conditions were carried out. The exo selectivity for resulting NBCA was improved when the hydrolysis was conducted with equimolar water at room temperature in the presence of the stronger base (tBuONa) (endo/exo: 18/82). Whereas the use of excess amount of water led to rapid and non-selective hydrolysis affording high endo content of the product. The plausible reaction mechanism involving rapid equilibrium of thermodynamic isomerization and kinetically preferred hydrolysis of exo ester is proposed.展开更多
We were interested, along this work, in the phenomena of the quintessence and the inflation due to the F-harmonic maps, in other words, in the functions of the scalar field such as the exponential and trigo-harmonic m...We were interested, along this work, in the phenomena of the quintessence and the inflation due to the F-harmonic maps, in other words, in the functions of the scalar field such as the exponential and trigo-harmonic maps. We showed that some F-harmonic map such as the trigonometric functions instead of the scalar field in the lagrangian, allow, in the absence of term of potential, reproduce the inflation. However, there are other F-harmonic maps such as exponential maps which can’t produce the inflation;the pressure and the density of this exponential harmonic field being both of the same sign. On the other hand, these exponential harmonic fields redraw well the phenomenon of the quintessence when the variation of these fields remains weak. The problem of coincidence, however remains.展开更多
Recently, enzymatic peptide synthesis has drawn increasing attention due to its eco-friendly reagents and mild conditions, as compared to traditional chemical peptide synthesis. In this study, we successfully produced...Recently, enzymatic peptide synthesis has drawn increasing attention due to its eco-friendly reagents and mild conditions, as compared to traditional chemical peptide synthesis. In this study, we successfully produced an important antioxidant dipeptide precursor, BOC-Tyr-Ala, via a kinetically controlled enzymatic peptide synthesis reaction, catalyzed by the recombinant car- boxypeptidase Y (CPY) expressed in P. pastoris GS 115. In this reaction, the enzyme activity was 95.043 U/mL, and we used t-butyloxycarbonyl-L-tyrosine-methyl ester (BOC-Tyr-OMe) as the acyl donor and L-alanine (L-Ala) was the amino donor. We optimized the reaction conditions to be: 30 ℃, pH 9.5, organic phase (methanol)/aqueous phase = 1:20, BOC-Tyr-OMe 0.05 mol/L, Ala 0.5 mol/L, and a reaction time of 12 h. Under these conditions, the dipeptide yield reached 49.84%. Then, we established the kinetic model of the synthesis reaction in the form of Michaelis-Menten equation according to the con-centration-time curve during the process and the transpeptidation mechanism. We calculated the apparent Michaelis constant K^(app)mand the apparent maximum reaction rate r^(app)max to be 2.9946 x 10^-2 mol/L and 2.0406 x 10.2 mmol/(mL h), respectively.展开更多
Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although th...Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.展开更多
This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that ...This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.展开更多
With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic ...With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous...The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
The localization and differential diagnosis of the sentinel lymph nodes(SLNs)are particularly important for tumor staging,surgical planning and prognosis.In this work,kinetically inert manganese(II)-based hybrid micel...The localization and differential diagnosis of the sentinel lymph nodes(SLNs)are particularly important for tumor staging,surgical planning and prognosis.In this work,kinetically inert manganese(II)-based hybrid micellar complexes(MnCs)for magnetic resonance imaging(MRI)were developed using an amphiphilic manganese-based chelate(C18-PhDTA-Mn)with reliable kinetic stability and self-assembled with a series of amphiphilic PEG-C18 polymers of different molecular weights(C18En,n=10,20,50).Among them,the probes composed by 1:10 mass ratio of manganese chelate/C18En had slightly different hydrodynamic particle sizes with similar surface charges as well as considerable relaxivities(∼13 mM^(−1)s^(−1)at 1.5 T).In vivo lymph node imaging in mice revealed that the MnC MnC-20 formed by C18E20 with C18-PhDTA-Mn at a hydrodynamic particle size of 5.5 nm had significant signal intensity brightening effect and shortened T1 relaxation time.At an imaging probe dosage of 125μg Mn/kg,lymph nodes still had significant signal enhancement in 2 h,while there is no obvious signal intensity alteration in non-lymphoid regions.In 4T1 tumor metastatic mice model,SLNs showed less signal enhancement and smaller T1 relaxation time variation at 30 min post-injection,when compared with normal lymph nodes.This was favorable to differentiate normal lymph nodes from SLN under a 3.0-T clinical MRI scanner.In conclusion,the strategy of developing manganese-based MR nanoprobes was useful in lymph node imaging.展开更多
In this article, we present a facile, direct, synthetic approach of preparing monodisperse [Au2s(SePh)ls]- nanoclusters in high yield. In this synthetic approach, two-phase Brust-Schiffrin method is used. Both PhSeH...In this article, we present a facile, direct, synthetic approach of preparing monodisperse [Au2s(SePh)ls]- nanoclusters in high yield. In this synthetic approach, two-phase Brust-Schiffrin method is used. Both PhSeH and NaBH4 should be added drop-wise to the solution of Au (III) at the same time. The formula and molecular purity of [Au25(SePh)ls] TOA+ clusters are characterized by MALDI-TOF mass spectrometry, NMR and TGA analysis. Furthermore, some critical parameters to obtain pure [Au25(SePh)18]-TOA+ are identified, including the NaBH4-to-Au ratio, the selenolate-to-Au ratio and the temperature. The facile, direct, high yield synthetic method can be widely applied in the theoretical research of Au clusters protected by selenol.展开更多
Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Des...Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Despite continuous research efforts,the insight into the reaction mechanism and kinetics theory are still in their nascent stage.In this study,ZEO-1 material,a zeolite with up to now the largest cages comprising 16×16-MRs,16×12-MRs,and 12×12-MRs,was explored for DMM carbonylation and disproportionation reactions.The rate of MMAc formation based on accessible Brönsted acid sites is 2.5 times higher for ZEO-1(Si/Al=21)relative to the previously investigated FAU(Si/Al=15),indicating the positive effect of spatial separation of active sites in ZEO-1 on catalytic activity.A higher MF formation rate is also observed over ZEO-1 with lower activation energy(79.94 vs.95.19 kJ/mol)compared with FAU(Si/Al=30).Two types of active sites are proposed within ZEO-1 zeolite:Site 1 located in large cages formed by 16×16-MRs and 16×12-MRs,which is active predominantly for MMAc formation,and Site 2 located in smaller cages for methyl formate/dimethyl ether formation.Kinetics investigation of DMM carbonylation over ZEO-1 exhibit a first-order dependence on CO partial pressure and a slightly inverse-order dependence on DMM partial pressure.The DMM disproportionation is nearly first-order dependence on DMM partial pressure,while it reveals a strongly inverse dependence with increasing CO partial pressure.Furthermore,ZEO-1 exhibits good catalytic stability,and almost no deactivation is observed during the more than 70 h test with high carbonylation selectivity of above 89%,due to the well-enhanced diffusion property demonstrated by intelligent-gravimetric analysis.展开更多
Contamination of microplastics(MPs)and their associated plastic additives in the marine environment is a global concern due to their widespread distribution and toxicity to aquatic life.Although polyvinyl chloride(PVC...Contamination of microplastics(MPs)and their associated plastic additives in the marine environment is a global concern due to their widespread distribution and toxicity to aquatic life.Although polyvinyl chloride(PVC)materials are commonly used in aquaculture environments,the potential risks of PVC MPs and the release of their additives in aquatic environments and organisms remain largely unknown.In this study,we investigated the leaching behaviors of phthalate esters(PAEs),including the mass and composition of PAEs in PVC MPs and their leaching kinetics,and evaluated the environmental risks of using PVC canvas in aquaculture activities.It was found that diethyl phthalate(DEP)was the most dominant PAE compound leached from PVC MPs(44.70±7.87 ng/g),followed by dimethyl phthalate(DMP,24.40±1.56 ng/g).The Elovich model was applied to simulate the leaching kinetics,and the simulated curves showed similar logarithmic trends that PAEs rapidly migrated from MPs to the water column at first and followed by a gradual increase over time.The different leaching kinetics of PAEs can be explained by their chemical properties,such as water solubility,molecular weight,and octanol-water partition coefficient.Compounds with lower solubility showed higher leaching coefficients,which are the constants of different PAEs in Elovich equation.Considering the potential joint toxicity of PVC leachates and the importance of food security,it is recommended to use PVC products responsibly and manage plastic waste properly.展开更多
Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can in...Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.展开更多
In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in...In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in the goods exchange market by using the kinetic theory of rarefied gas.The trading objects are two kinds of commodities(commodities A and B)and the trading subjects are agents of two groups(dealers and speculators).We deduce the interaction rules according to the principle of utility maximization and consider the transfer of agents in the Boltzmann equation.The steady solution of the Fokker-Planck equation for a special case is obtained and the effects of trading strategy and transfer frequency on the steady distribution are analyzed in numerical experiments.The conclusions illustrate that the transfer of agents is conducive to reducing the inequality of wealth distribution.展开更多
Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentratio...Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentration on the solid-state reaction process of the C_(3)BA_(3-y)F_(y)$(y=0,0.2,0.25,0.4,and 0.6)were investigated by the Rietveld/XRD quantitative phase analysis.The experimental results show that Fe-doping not only significantly improvs the synthesis of C_(3)BA_(3-y)F_(y)$,but also reduces the solid-state reaction potential energy barrier and then promots mineral formation.Nevertheless,the mineral begins to decompose when the Fe/Al ratio exceeds 2/13 and the calcination temperature exceeds 1300℃.The Ginstling equation is found to be the most appropriate kinetic model for the statistical fitting of C_(3)BA_(3-y)F_(y)$formation process,based on the mathematical model.It is observed that the apparent activation energy of C_(3)BA_(3-y)F_(y)$decreases and then increases with increasing Fe-doping concentration.展开更多
We proposed and demonstrated a kinetically interlocking multiple-units supramolecular polymer-ization strategy.Through rationally designed multi-ple-units monomers,the degree of polymerization(X w)detected was more th...We proposed and demonstrated a kinetically interlocking multiple-units supramolecular polymer-ization strategy.Through rationally designed multi-ple-units monomers,the degree of polymerization(X w)detected was more than 50 with a polydispersi-ty index of∼1.4.The prepared polymers were stable when diluted to 20μM or lower concentrations.展开更多
文摘Simple and efficient stereo-selective synthesis of exo-5-norbornene-2-carboxylic acid (NBCA) is reported. Preliminary studies on base promoted isomerization of methyl 5-norbornene-2-carboxylate (MNBC) revealed that rapid isomerization was accomplished with sodium tert-butoxide (tBuONa), and the exo-content at the equilibrium was ca. 60%. The hydrolyses of endo-rich MNBC (endo/exo = 80/20) under various conditions were carried out. The exo selectivity for resulting NBCA was improved when the hydrolysis was conducted with equimolar water at room temperature in the presence of the stronger base (tBuONa) (endo/exo: 18/82). Whereas the use of excess amount of water led to rapid and non-selective hydrolysis affording high endo content of the product. The plausible reaction mechanism involving rapid equilibrium of thermodynamic isomerization and kinetically preferred hydrolysis of exo ester is proposed.
文摘We were interested, along this work, in the phenomena of the quintessence and the inflation due to the F-harmonic maps, in other words, in the functions of the scalar field such as the exponential and trigo-harmonic maps. We showed that some F-harmonic map such as the trigonometric functions instead of the scalar field in the lagrangian, allow, in the absence of term of potential, reproduce the inflation. However, there are other F-harmonic maps such as exponential maps which can’t produce the inflation;the pressure and the density of this exponential harmonic field being both of the same sign. On the other hand, these exponential harmonic fields redraw well the phenomenon of the quintessence when the variation of these fields remains weak. The problem of coincidence, however remains.
基金supported by Ministry of Science and Technology of China(No.2012YQ090194 and No.2013AA102204)the National Natural Science Foundation of China(No.21676191,No.21476165,and No.21621004)
文摘Recently, enzymatic peptide synthesis has drawn increasing attention due to its eco-friendly reagents and mild conditions, as compared to traditional chemical peptide synthesis. In this study, we successfully produced an important antioxidant dipeptide precursor, BOC-Tyr-Ala, via a kinetically controlled enzymatic peptide synthesis reaction, catalyzed by the recombinant car- boxypeptidase Y (CPY) expressed in P. pastoris GS 115. In this reaction, the enzyme activity was 95.043 U/mL, and we used t-butyloxycarbonyl-L-tyrosine-methyl ester (BOC-Tyr-OMe) as the acyl donor and L-alanine (L-Ala) was the amino donor. We optimized the reaction conditions to be: 30 ℃, pH 9.5, organic phase (methanol)/aqueous phase = 1:20, BOC-Tyr-OMe 0.05 mol/L, Ala 0.5 mol/L, and a reaction time of 12 h. Under these conditions, the dipeptide yield reached 49.84%. Then, we established the kinetic model of the synthesis reaction in the form of Michaelis-Menten equation according to the con-centration-time curve during the process and the transpeptidation mechanism. We calculated the apparent Michaelis constant K^(app)mand the apparent maximum reaction rate r^(app)max to be 2.9946 x 10^-2 mol/L and 2.0406 x 10.2 mmol/(mL h), respectively.
基金This work was supported in part by a grant from Russian Scientific Foundation(Project No.17-75-30064).
文摘Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.
基金supported by the National Natural Science Foundation of China(No.52271089)the financial support from the C hina Postdoctoral Science Foundation(No.2023M732192)。
文摘This work reveals the significant effects of cobalt(Co)on the microstructure and impact toughness of as-quenched highstrength steels by experimental characterizations and thermo-kinetic analyses.The results show that the Co-bearing steel exhibits finer blocks and a lower ductile-brittle transition temperature than the steel without Co.Moreover,the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6.The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair.Furthermore,the addition of Co induces a larger transformation driving force and a lower bainite start temperature(BS),thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair.These findings would be instructive for the composition,microstructure design,and property optimization of high-strength steels.
基金financially supported by the National Natural Science Foundation of China(No.52204310)the Guizhou Provincial Key Laboratory of Coal Clean Utilization(No.[2020]2001)+5 种基金the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)the Natural Science Foundation of Liaoning Province(No.2021–MS–083)the Fundamental Research Funds for the Central Universities,China(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology),Ministry of Education(No.JKF22–02)the Foundation of Liupanshui Normal University(No.LPSSYZDZK202205)the Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,China。
文摘With the continuous increase in the disposal volume of spent lithium-ion batteries(LIBs),properly recycling spent LIBs has become essential for the advancement of the circular economy.This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials.The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free,model-fitting,and Z(α)function(αis conversion rate).Results indicated that the reaction was dominated by the first-order(F1)model when the conversion rate was less than or equal to 0.5 and shifted to the second-order(F2)model when the conversion rate exceeded 0.5.Optimal conditions were determined by thoroughly investigating the effects of roasting temperature,roasting time,and the mass ratio of NH_(4)Cl to LiCoO_(2).Under the optimal conditions,namely 400℃,20 min,and NH_(4)Cl/LiCoO_(2)mass ratio of 3:1,the leaching efficiency of Li and Co reached 99.43% and 99.05%,respectively.Analysis of the roasted products revealed that valuable metals in LiCoO_(2)transformed into CoCl_(2) and LiCl.Furthermore,the reaction mechanism was elucidated,providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective.This technology can guide the development of LIB recycling processes with low energy consumption,low secondary pollution,high recovery efficiency,and high added value.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by Basic and Applied Basic Research Fund Project of Guangdong(2022A1515011817,2023A1515030160)Research and Innovation Group of Guangdong University of Education(2024KYCXTD014)。
文摘The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金supported by the National Natural Science Foundation of China(NSFC,52073192)the Innovative Research Groups of the National Natural Science Foundation of China(81621003).
文摘The localization and differential diagnosis of the sentinel lymph nodes(SLNs)are particularly important for tumor staging,surgical planning and prognosis.In this work,kinetically inert manganese(II)-based hybrid micellar complexes(MnCs)for magnetic resonance imaging(MRI)were developed using an amphiphilic manganese-based chelate(C18-PhDTA-Mn)with reliable kinetic stability and self-assembled with a series of amphiphilic PEG-C18 polymers of different molecular weights(C18En,n=10,20,50).Among them,the probes composed by 1:10 mass ratio of manganese chelate/C18En had slightly different hydrodynamic particle sizes with similar surface charges as well as considerable relaxivities(∼13 mM^(−1)s^(−1)at 1.5 T).In vivo lymph node imaging in mice revealed that the MnC MnC-20 formed by C18E20 with C18-PhDTA-Mn at a hydrodynamic particle size of 5.5 nm had significant signal intensity brightening effect and shortened T1 relaxation time.At an imaging probe dosage of 125μg Mn/kg,lymph nodes still had significant signal enhancement in 2 h,while there is no obvious signal intensity alteration in non-lymphoid regions.In 4T1 tumor metastatic mice model,SLNs showed less signal enhancement and smaller T1 relaxation time variation at 30 min post-injection,when compared with normal lymph nodes.This was favorable to differentiate normal lymph nodes from SLN under a 3.0-T clinical MRI scanner.In conclusion,the strategy of developing manganese-based MR nanoprobes was useful in lymph node imaging.
基金the financial support by the National Natural Science Foundation of China (20871112, 21072001, 21372006)Changjiang Scholars Program+1 种基金the Scientific Research Foundation for Returning Overseas Chinese Scholars, State Education Ministry, Ministry of Human Resources and Social Security, Anhui Province International Scientific and Technological Cooperation Project211 Project of Anhui University
文摘In this article, we present a facile, direct, synthetic approach of preparing monodisperse [Au2s(SePh)ls]- nanoclusters in high yield. In this synthetic approach, two-phase Brust-Schiffrin method is used. Both PhSeH and NaBH4 should be added drop-wise to the solution of Au (III) at the same time. The formula and molecular purity of [Au25(SePh)ls] TOA+ clusters are characterized by MALDI-TOF mass spectrometry, NMR and TGA analysis. Furthermore, some critical parameters to obtain pure [Au25(SePh)18]-TOA+ are identified, including the NaBH4-to-Au ratio, the selenolate-to-Au ratio and the temperature. The facile, direct, high yield synthetic method can be widely applied in the theoretical research of Au clusters protected by selenol.
文摘Methyl methoxyacetate(MMAc)and methyl formate(MF)can be produced directly by heterogeneous zeolite-catalyzed carbonylation and disproportionation of dimethoxymethane(DMM),with near 100%selectivity for each process.Despite continuous research efforts,the insight into the reaction mechanism and kinetics theory are still in their nascent stage.In this study,ZEO-1 material,a zeolite with up to now the largest cages comprising 16×16-MRs,16×12-MRs,and 12×12-MRs,was explored for DMM carbonylation and disproportionation reactions.The rate of MMAc formation based on accessible Brönsted acid sites is 2.5 times higher for ZEO-1(Si/Al=21)relative to the previously investigated FAU(Si/Al=15),indicating the positive effect of spatial separation of active sites in ZEO-1 on catalytic activity.A higher MF formation rate is also observed over ZEO-1 with lower activation energy(79.94 vs.95.19 kJ/mol)compared with FAU(Si/Al=30).Two types of active sites are proposed within ZEO-1 zeolite:Site 1 located in large cages formed by 16×16-MRs and 16×12-MRs,which is active predominantly for MMAc formation,and Site 2 located in smaller cages for methyl formate/dimethyl ether formation.Kinetics investigation of DMM carbonylation over ZEO-1 exhibit a first-order dependence on CO partial pressure and a slightly inverse-order dependence on DMM partial pressure.The DMM disproportionation is nearly first-order dependence on DMM partial pressure,while it reveals a strongly inverse dependence with increasing CO partial pressure.Furthermore,ZEO-1 exhibits good catalytic stability,and almost no deactivation is observed during the more than 70 h test with high carbonylation selectivity of above 89%,due to the well-enhanced diffusion property demonstrated by intelligent-gravimetric analysis.
基金Supported by the State Key Laboratory of Marine Pollution(SKLMP)in City University of Hong Kong,the Shenzhen Science and Technology Program(No.JCYJ20220530140813030 to Meng YAN)the Innovation and Technology Commission(ITC)of the Hong Kong SAR Government(No.9448002),which provides regular research funding support to SKLMP。
文摘Contamination of microplastics(MPs)and their associated plastic additives in the marine environment is a global concern due to their widespread distribution and toxicity to aquatic life.Although polyvinyl chloride(PVC)materials are commonly used in aquaculture environments,the potential risks of PVC MPs and the release of their additives in aquatic environments and organisms remain largely unknown.In this study,we investigated the leaching behaviors of phthalate esters(PAEs),including the mass and composition of PAEs in PVC MPs and their leaching kinetics,and evaluated the environmental risks of using PVC canvas in aquaculture activities.It was found that diethyl phthalate(DEP)was the most dominant PAE compound leached from PVC MPs(44.70±7.87 ng/g),followed by dimethyl phthalate(DMP,24.40±1.56 ng/g).The Elovich model was applied to simulate the leaching kinetics,and the simulated curves showed similar logarithmic trends that PAEs rapidly migrated from MPs to the water column at first and followed by a gradual increase over time.The different leaching kinetics of PAEs can be explained by their chemical properties,such as water solubility,molecular weight,and octanol-water partition coefficient.Compounds with lower solubility showed higher leaching coefficients,which are the constants of different PAEs in Elovich equation.Considering the potential joint toxicity of PVC leachates and the importance of food security,it is recommended to use PVC products responsibly and manage plastic waste properly.
基金financially supported by the Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking (No. KF-20-3)Shandong Postdoctoral Science Foundation, China (No. SDCX-ZG-202301014)。
文摘Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t.
文摘In order to avoid the worsening of wealth inequality,it is necessary to explore the influencing factors of wealth distribution and discuss measures to reduce wealth inequality.We investigate the wealth distribution in the goods exchange market by using the kinetic theory of rarefied gas.The trading objects are two kinds of commodities(commodities A and B)and the trading subjects are agents of two groups(dealers and speculators).We deduce the interaction rules according to the principle of utility maximization and consider the transfer of agents in the Boltzmann equation.The steady solution of the Fokker-Planck equation for a special case is obtained and the effects of trading strategy and transfer frequency on the steady distribution are analyzed in numerical experiments.The conclusions illustrate that the transfer of agents is conducive to reducing the inequality of wealth distribution.
基金Funded by the National Key Research and Development Program of China(2021YFB3802002)the National Natural Science Foundation of China(Nos.52172021 and U22A20126)+4 种基金the Science Foundation for Excellent Young Scholars of Shandong Province(No.ZR2023YQ041)the Natural Science Foundation of Shandong Province(ZR2021ME123)the Taishan Scholars Program(No.tsqn202306224)the Science and Technology Innovation Support Plan for Young Researchers in Institutes of Higher Education in Shandong(No.2019KJA017)the'111 Center'。
文摘Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentration on the solid-state reaction process of the C_(3)BA_(3-y)F_(y)$(y=0,0.2,0.25,0.4,and 0.6)were investigated by the Rietveld/XRD quantitative phase analysis.The experimental results show that Fe-doping not only significantly improvs the synthesis of C_(3)BA_(3-y)F_(y)$,but also reduces the solid-state reaction potential energy barrier and then promots mineral formation.Nevertheless,the mineral begins to decompose when the Fe/Al ratio exceeds 2/13 and the calcination temperature exceeds 1300℃.The Ginstling equation is found to be the most appropriate kinetic model for the statistical fitting of C_(3)BA_(3-y)F_(y)$formation process,based on the mathematical model.It is observed that the apparent activation energy of C_(3)BA_(3-y)F_(y)$decreases and then increases with increasing Fe-doping concentration.
基金This work was supported by the National Natural Science Foundation of China(No.21890731 and 21821001).
文摘We proposed and demonstrated a kinetically interlocking multiple-units supramolecular polymer-ization strategy.Through rationally designed multi-ple-units monomers,the degree of polymerization(X w)detected was more than 50 with a polydispersi-ty index of∼1.4.The prepared polymers were stable when diluted to 20μM or lower concentrations.