In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost para...In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. This model is solved with shortages and the unit cost dependent demand is assumed. Hence the cost parameters are imposed here in fuzzy environment. This model has been solved by Kuhn-Tucker conditions method. The results for the model without shortages are obtained as a particular case. The model is illustrated with numerical example.展开更多
We used observed concentrations of air pollutants,reanalyzed meteorological parameters,and results from the Goddard Earth Observing System Chemical Transport Model to examine the relationships between concentrations o...We used observed concentrations of air pollutants,reanalyzed meteorological parameters,and results from the Goddard Earth Observing System Chemical Transport Model to examine the relationships between concentrations of maximum daily 8-h average ozone(MDA8 O_(3)),PM_(2.5)(particulate matter with diameter of 2.5μm or less),and PM_(2.5)components and 2-m temperature(T2)or relative humidity(RH),as well as the effectiveness of precursor emission reductions on the control of O_(3) and PM_(2.5) in Beijing–Tianjin–Hebei(BTH)under different summertime temperature and humidity conditions.Both observed(simulated)MDA8 O_(3) and PM_(2.5) concentrations increased as T2 went up,with linear trends of 4.8(3.2)ppb℃^(−1) and 1.9(1.5)μg m^(−3)℃^(−1),respectively.Model results showed that the decreases in MDA8 O_(3) from precursor emission reductions were more sensitive to T2 than to RH.Reducing a larger proportion of volatile organic compound(VOC)emissions at higher T2 was more effective for the control of summertime O_(3) in BTH.For the control of summertime PM_(2.5) in BTH,reducing nitrogen oxides(NOx)combined with a small proportion of VOCs was the best measure.The magnitude of reduction in PM_(2.5) from reducing precursor emissions was more sensitive to RH than to T2,with the best efficiency at high RH.Results from this study are helpful for formulating effective policies to tackle O_(3) and PM_(2.5) pollution in BTH.展开更多
Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrai...Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(...This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(CAE)and Gaussian mixture hidden Markov model(GMHMM)is proposed.Firstly,the built-in sensor information under normal conditions is recorded,and a 1D convolutional autoencoder is employed to compress high-dimensional time series,thereby transforming the anomaly detection problem in high-dimensional space into a density estimation problem in a latent low-dimensional space.Then,two separate estimation networks are utilized to predict the mixture memberships and state transition probabilities for each sample,enabling GMHMM to handle low-dimensional representations and multi-condition information.Furthermore,a cost function comprising CAE reconstruction and GMHMM probability assessment is constructed for the low-dimensional representation generation and subsequent density estimation in an end-to-end fashion,and the joint optimization effectively enhances the anomaly detection performance.Finally,experiments are carried out on a self-developed multi-axis carving machine platform to validate the effectiveness and superiority of the proposed method.展开更多
Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),t...Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),to investigate the frost heave process in rock masses where thermal transfer,water migration,water-ice phase transition(ice growth)and ice-rock interaction are explicitly simulated.The proposed model is first validated against existing experimental and analytical solutions,and further applied to investigate path-dependent frost heave behavior under various freezing conditions.Results show that freezing direction plays a vital role in the dynamic ice growth and ice-rock interaction,thus affecting the frost heave behavior.In the top-down freezing regime,ice plugs form first at the crack's top surface,sealing the crack and preventing water migration,which can amplify ice pressure.Parametric studies,including rock Young's modulus,ice-rock friction,and rock hydraulic conductivity,further reveal that the temporal aspects of ice development and rock mechanical response strongly affect ice-rock interaction and hence the frost heave mechanism.Furthermore,some typical phenomena(e.g.water/ice extrusion and frost cracking)can also be well captured in this model.This novel numerical framework sheds new light on frost heave behavior and enriches our understanding of frost heave mechanisms and ice-rock interaction processes within cold environment engineering projects.展开更多
In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons ...In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons in source rocks of lacustrine shale,yet this aspect has received little attention.This paper,based on the case analysis,explores how preservation conditions influence the enrichment of mobile hydrocarbons in shale oil.Research showns that good preservation conditions play three key roles.(1)Ensure the retention of sufficient light hydrocarbons(C_(1)–C_(13)),medium hydrocarbons(C_(14)–C_(25))and small molecular aromatics(including 1–2 benzene rings)in the formation,which enhances the fluidity and flow of shale oil;(2)Maintain a high energy field(abnormally high pressure),thus facilitating the maximum outflow of shale oil;(3)Ensure that the retained hydrocarbons have the miscible flow condition of multi-component hydrocarbons(light hydrocarbons,medium hydrocarbons,heavy hydrocarbons,and heteroatomic compounds),so that the heavy hydrocarbons(C_(25+))and heavy components(non-hydrocarbons and asphaltenes)have improved fluidity and maximum flow capacity.In conclusion,in addition to the advantages of organic matter type,abundance,thermal maturity,and reservoir space,good preservation conditions of shale layers are essential for the formation of economically viable shale oil reservoirs,which should be incorporated into the evaluation criteria of shale oil-rich areas/segments and considered a necessary factor when selecting favorable exploration targets.展开更多
Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based o...Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based on daily monitoring data from Meiliang Bay in Taihu Lake from March to June,2016-2018,we studied the environmental conditions necessary for the succession of these two cyanobacteria.Results show that from March to June,the dominant genera of cyanobacteria experienced succession and co-dominated with Microcystis.The succession process included three stages.In StageⅠ,the biomass of Dolichospermum and Microcystis was similar(March),but Dolichospermum was dominant for most of the period.In StageⅡ,dominance alternated between Dolichospermum and Microcystis(April to mid-May).In StageⅢ,the biomass of Microcystis dominated(mid-May to June).In addition,temperature and nutrients across the three stages varied significantly.The average temperature increased continuously from 10.9 to 18.4,and to 24.2℃.The total nitrogen content decreased from 2.87 to 2.40,and to 1.86 mg/L.The total phosphorus content increased from 0.08 to 0.09,and to 0.12 mg/L.Correlation analysis revealed that Microcystis biomass was positively correlated with temperature and total phosphorus.Dolichospermum biomass was positively correlated with total nitrogen.Classification and regression tree displays that when the temperature was below 18.1℃,Dolichospermum dominated;above 18.1℃,Microcystis took over.Further analysis revealed that when temperature reached 18℃,the biomass of Microcystis increased exponentially,and the biomass of Dolichospermum exhibited a Gaussian distribution trend.This finding indicated that temperature was the key factor in the succession of Dolichospermum and Microcystis in nutrient-rich shallow lakes.As nitrogen and phosphorus concentrations decrease,the dominant species of cyanobacteria will diversify its development.The results of this study provide a foundation for risk prediction and control strategies for cyanobacterial blooms in lakes and reservoirs.展开更多
The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse...To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors.展开更多
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ...A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending stre...This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending strength,color changes,and surface quality.Results showed outdoor exposure negatively affected mechanical properties,particularly in samples with extended finger joints,causing significant surface cracks in uncoated samples.Beech wood exhibited notable color changes under exposure,with approximately 50%darkening without coating compared to 25%under covered conditions.Coated samples displayed minimal color changes,affirming the efficacy of surface treatment.Fir wood exhibited a roughness of 8.264μm,while beechwood average roughness increased from 6.767 to 13.916μm after exposure,with micro-pore development affecting water performance.Microscopic analysis identified prevalent fungal colonies,including Penicillium,Aureobasidium,Sclerophoma,and Chaetomium,underscoring their role in organic matter decomposition.This study highlights the importance of wood exposure and treatment selection for various applications.展开更多
Background The hospitalization rate of ambulatory care sensitive conditions(ACSCs)has been recognized as an essential indicator reflective of the overall performance of healthcare system.At present,ACSCs has been wide...Background The hospitalization rate of ambulatory care sensitive conditions(ACSCs)has been recognized as an essential indicator reflective of the overall performance of healthcare system.At present,ACSCs has been widely used in practice and research to evaluate health service quality and efficiency worldwide.The definition of ACSCs varies across countries due to different challenges posed on healthcare systems.However,China does not have its own list of ACSCs.The study aims to develop a list to meet health system monitoring,reporting and evaluation needs in China.Methods To develop the list,we will combine the best methodological evidence available with real-world evidence,adopt a systematic and rigorous process and absorb multidisciplinary expertise.Specific steps include:(1)establish-ment of working groups;(2)generations of the initial list(review of already published lists,semi-structured interviews,calculations of hospitalization rate);(3)optimization of the list(evidence evaluation,Delphi consensus survey);and(4)approval of a final version of China’s ACSCs list.Within each step of the process,we will calculate frequencies and pro-portions,use descriptive analysis to summarize and draw conclusions,discuss the results,draft a report,and refine the list.Discussion Once completed,China’s list of ACSCs can be used to comprehensively evaluate the current situation and performance of health services,identify flaws and deficiencies embedded in the healthcare system to provide evidence-based implications to inform decision-makings towards the optimization of China’s healthcare system.The experiences might be broadly applicable and serve the purpose of being a prime example for nations with similar conditions.展开更多
This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,t...This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.展开更多
The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand...The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.展开更多
文摘In this paper, a multi-item inventory model with storage space, number of orders and production cost as constraints are developed in both crisp and fuzzy environment. In most of the real world situations the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. This model is solved with shortages and the unit cost dependent demand is assumed. Hence the cost parameters are imposed here in fuzzy environment. This model has been solved by Kuhn-Tucker conditions method. The results for the model without shortages are obtained as a particular case. The model is illustrated with numerical example.
基金supported by the National Natural Science Foundation of China(Grant No.91744311).
文摘We used observed concentrations of air pollutants,reanalyzed meteorological parameters,and results from the Goddard Earth Observing System Chemical Transport Model to examine the relationships between concentrations of maximum daily 8-h average ozone(MDA8 O_(3)),PM_(2.5)(particulate matter with diameter of 2.5μm or less),and PM_(2.5)components and 2-m temperature(T2)or relative humidity(RH),as well as the effectiveness of precursor emission reductions on the control of O_(3) and PM_(2.5) in Beijing–Tianjin–Hebei(BTH)under different summertime temperature and humidity conditions.Both observed(simulated)MDA8 O_(3) and PM_(2.5) concentrations increased as T2 went up,with linear trends of 4.8(3.2)ppb℃^(−1) and 1.9(1.5)μg m^(−3)℃^(−1),respectively.Model results showed that the decreases in MDA8 O_(3) from precursor emission reductions were more sensitive to T2 than to RH.Reducing a larger proportion of volatile organic compound(VOC)emissions at higher T2 was more effective for the control of summertime O_(3) in BTH.For the control of summertime PM_(2.5) in BTH,reducing nitrogen oxides(NOx)combined with a small proportion of VOCs was the best measure.The magnitude of reduction in PM_(2.5) from reducing precursor emissions was more sensitive to RH than to T2,with the best efficiency at high RH.Results from this study are helpful for formulating effective policies to tackle O_(3) and PM_(2.5) pollution in BTH.
文摘Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
基金Supported by the National Natural Science Foundation of China(No.62203390).
文摘This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(CAE)and Gaussian mixture hidden Markov model(GMHMM)is proposed.Firstly,the built-in sensor information under normal conditions is recorded,and a 1D convolutional autoencoder is employed to compress high-dimensional time series,thereby transforming the anomaly detection problem in high-dimensional space into a density estimation problem in a latent low-dimensional space.Then,two separate estimation networks are utilized to predict the mixture memberships and state transition probabilities for each sample,enabling GMHMM to handle low-dimensional representations and multi-condition information.Furthermore,a cost function comprising CAE reconstruction and GMHMM probability assessment is constructed for the low-dimensional representation generation and subsequent density estimation in an end-to-end fashion,and the joint optimization effectively enhances the anomaly detection performance.Finally,experiments are carried out on a self-developed multi-axis carving machine platform to validate the effectiveness and superiority of the proposed method.
基金supported by the Natural Sciences and Engineering Research Council of Canada(Grant Nos.Discovery 341275,and CRDPJ 543894-19)NSERC/Energi Simulation Industrial Research Chair programState Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Fund(Grant No.SKLGP2024K001).
文摘Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),to investigate the frost heave process in rock masses where thermal transfer,water migration,water-ice phase transition(ice growth)and ice-rock interaction are explicitly simulated.The proposed model is first validated against existing experimental and analytical solutions,and further applied to investigate path-dependent frost heave behavior under various freezing conditions.Results show that freezing direction plays a vital role in the dynamic ice growth and ice-rock interaction,thus affecting the frost heave behavior.In the top-down freezing regime,ice plugs form first at the crack's top surface,sealing the crack and preventing water migration,which can amplify ice pressure.Parametric studies,including rock Young's modulus,ice-rock friction,and rock hydraulic conductivity,further reveal that the temporal aspects of ice development and rock mechanical response strongly affect ice-rock interaction and hence the frost heave mechanism.Furthermore,some typical phenomena(e.g.water/ice extrusion and frost cracking)can also be well captured in this model.This novel numerical framework sheds new light on frost heave behavior and enriches our understanding of frost heave mechanisms and ice-rock interaction processes within cold environment engineering projects.
基金Supported by the National Natural Science Foundation of China(U22B6004)Project of PetroChina Research Institute of Petroleum Exploration and Development(2022yjcq03)Core Technology Key Project of China Petroleum Changqing Oilfield Company(KJZX2023-01).
文摘In addition to the organic matter type,abundance,thermal maturity,and shale reservoir space,the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons in source rocks of lacustrine shale,yet this aspect has received little attention.This paper,based on the case analysis,explores how preservation conditions influence the enrichment of mobile hydrocarbons in shale oil.Research showns that good preservation conditions play three key roles.(1)Ensure the retention of sufficient light hydrocarbons(C_(1)–C_(13)),medium hydrocarbons(C_(14)–C_(25))and small molecular aromatics(including 1–2 benzene rings)in the formation,which enhances the fluidity and flow of shale oil;(2)Maintain a high energy field(abnormally high pressure),thus facilitating the maximum outflow of shale oil;(3)Ensure that the retained hydrocarbons have the miscible flow condition of multi-component hydrocarbons(light hydrocarbons,medium hydrocarbons,heavy hydrocarbons,and heteroatomic compounds),so that the heavy hydrocarbons(C_(25+))and heavy components(non-hydrocarbons and asphaltenes)have improved fluidity and maximum flow capacity.In conclusion,in addition to the advantages of organic matter type,abundance,thermal maturity,and reservoir space,good preservation conditions of shale layers are essential for the formation of economically viable shale oil reservoirs,which should be incorporated into the evaluation criteria of shale oil-rich areas/segments and considered a necessary factor when selecting favorable exploration targets.
基金Supported by the National Natural Science Foundation of China(No.42007159)the Network Security and Informatization Project of Chinese Academy of Sciences(No.CAS-WX2021SF-050402)+2 种基金the Water Science and Technology Project of Jiangsu Province(No.2020004)the Key Project of Nanjing Institute of Geography and LimnologyChinese Academy of Sciences(No.NIGLAS2022GS03)。
文摘Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based on daily monitoring data from Meiliang Bay in Taihu Lake from March to June,2016-2018,we studied the environmental conditions necessary for the succession of these two cyanobacteria.Results show that from March to June,the dominant genera of cyanobacteria experienced succession and co-dominated with Microcystis.The succession process included three stages.In StageⅠ,the biomass of Dolichospermum and Microcystis was similar(March),but Dolichospermum was dominant for most of the period.In StageⅡ,dominance alternated between Dolichospermum and Microcystis(April to mid-May).In StageⅢ,the biomass of Microcystis dominated(mid-May to June).In addition,temperature and nutrients across the three stages varied significantly.The average temperature increased continuously from 10.9 to 18.4,and to 24.2℃.The total nitrogen content decreased from 2.87 to 2.40,and to 1.86 mg/L.The total phosphorus content increased from 0.08 to 0.09,and to 0.12 mg/L.Correlation analysis revealed that Microcystis biomass was positively correlated with temperature and total phosphorus.Dolichospermum biomass was positively correlated with total nitrogen.Classification and regression tree displays that when the temperature was below 18.1℃,Dolichospermum dominated;above 18.1℃,Microcystis took over.Further analysis revealed that when temperature reached 18℃,the biomass of Microcystis increased exponentially,and the biomass of Dolichospermum exhibited a Gaussian distribution trend.This finding indicated that temperature was the key factor in the succession of Dolichospermum and Microcystis in nutrient-rich shallow lakes.As nitrogen and phosphorus concentrations decrease,the dominant species of cyanobacteria will diversify its development.The results of this study provide a foundation for risk prediction and control strategies for cyanobacterial blooms in lakes and reservoirs.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金National Key R&D Program of China(Grant No.2023YFE0114600)The National Natural Science Foundation of China(NSFC)-(Grant No.52477029)+1 种基金Joint Laboratory of China-Morocco Green Energy and Advanced Materials,The Youth Innovation Team of Shaanxi Universities,The Xi’an City Science and Technology Project(No.23GXFW0070)Xi’an International Science and Technology Cooperation Base.
文摘To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors.
基金Supported by the Natural Science Foundation of Shandong Province(ZR2023MA023,ZR2021MA047)Guangdong Provincial Featured Innovation Projects of High School(2023KTSCX067).
文摘A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金financial support of the Slovenian Research Agency(ARRS)within Research Program P4-0015(Wood and Lignocellulosic Composites)Ministry of Education,Science,Culture,and Sports of the Una-Sana Canton,Co-Financing of Scientific Research and Research and Development Projects of Special Interest to the Una-Sana Canton(03-02-2190-647/2023)Assessment of the Structural Integrity of Cultural Buildings in Bosnia and Herzegovina(Una-Sana Canton)Using Non-Destructive Testing Methods.
文摘This study investigated the mechanical properties of beech(Fagus sylvatica L.)and fir(Abies alba)wood from Bosnia and Herzegovina under outdoor exposure.Samples were exposed for 3-month exposure to assess bending strength,color changes,and surface quality.Results showed outdoor exposure negatively affected mechanical properties,particularly in samples with extended finger joints,causing significant surface cracks in uncoated samples.Beech wood exhibited notable color changes under exposure,with approximately 50%darkening without coating compared to 25%under covered conditions.Coated samples displayed minimal color changes,affirming the efficacy of surface treatment.Fir wood exhibited a roughness of 8.264μm,while beechwood average roughness increased from 6.767 to 13.916μm after exposure,with micro-pore development affecting water performance.Microscopic analysis identified prevalent fungal colonies,including Penicillium,Aureobasidium,Sclerophoma,and Chaetomium,underscoring their role in organic matter decomposition.This study highlights the importance of wood exposure and treatment selection for various applications.
基金National Natural Science Foundation of China(Grant No.72074163 and 72374149)Bill&Melinda Gates Foundation(Grant No.OPP1178967)+1 种基金Institutional Research Fund from Sichuan University(Grant No.2023SCUH0025)Double-First Class funds of Sichuan University for talents(Grant No.SKSYL2023-03).
文摘Background The hospitalization rate of ambulatory care sensitive conditions(ACSCs)has been recognized as an essential indicator reflective of the overall performance of healthcare system.At present,ACSCs has been widely used in practice and research to evaluate health service quality and efficiency worldwide.The definition of ACSCs varies across countries due to different challenges posed on healthcare systems.However,China does not have its own list of ACSCs.The study aims to develop a list to meet health system monitoring,reporting and evaluation needs in China.Methods To develop the list,we will combine the best methodological evidence available with real-world evidence,adopt a systematic and rigorous process and absorb multidisciplinary expertise.Specific steps include:(1)establish-ment of working groups;(2)generations of the initial list(review of already published lists,semi-structured interviews,calculations of hospitalization rate);(3)optimization of the list(evidence evaluation,Delphi consensus survey);and(4)approval of a final version of China’s ACSCs list.Within each step of the process,we will calculate frequencies and pro-portions,use descriptive analysis to summarize and draw conclusions,discuss the results,draft a report,and refine the list.Discussion Once completed,China’s list of ACSCs can be used to comprehensively evaluate the current situation and performance of health services,identify flaws and deficiencies embedded in the healthcare system to provide evidence-based implications to inform decision-makings towards the optimization of China’s healthcare system.The experiences might be broadly applicable and serve the purpose of being a prime example for nations with similar conditions.
文摘This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,grant number S-1443-0223.
文摘The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.