DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed i...DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed in saline soil habitat throughout Southeast Europe and Northwest Asia, and used mainly as forage grass in China. The discrimination of Ka-lidium species was based only on morphology-based identification systems and limited to recognized species. Here, we tested four DNA candidate loci, one nuclear locus (ITS, internal transcribed spacer) and three plastid loci (rbcL9 matK and ycflb), to select potential DNA barcodes for identifying different Kalidium species. Results showed that the best DNA barcode was ITS locus, which displayed the highest species discrimination rate (100%), followed by matK (33.3%),ycflb (16.7%), and rbcL (16.7%). Meanwhile, four loci clearly identified the variant species, Kalidium cuspidatum (Ung.-Stemb.) Gmb.var.A. J. Li,as a single species in Kalidium.展开更多
基金supported by the Program for New Century Excellent Talents in the Ministry of Education in China(NCET-09-0446)lzujbky-2012-k22 to Yu Xia Wu
文摘DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed in saline soil habitat throughout Southeast Europe and Northwest Asia, and used mainly as forage grass in China. The discrimination of Ka-lidium species was based only on morphology-based identification systems and limited to recognized species. Here, we tested four DNA candidate loci, one nuclear locus (ITS, internal transcribed spacer) and three plastid loci (rbcL9 matK and ycflb), to select potential DNA barcodes for identifying different Kalidium species. Results showed that the best DNA barcode was ITS locus, which displayed the highest species discrimination rate (100%), followed by matK (33.3%),ycflb (16.7%), and rbcL (16.7%). Meanwhile, four loci clearly identified the variant species, Kalidium cuspidatum (Ung.-Stemb.) Gmb.var.A. J. Li,as a single species in Kalidium.
基金Supported by the"Light of West"Project of the Chinese Academy of Sciences (CAS) the"Scholar of Oasis"Project (0671051) of Xinjiang Institute of Ecology and Geography, CAS