期刊文献+
共找到30,018篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of internal action to enhance structural stability and electrochemical performance of K^(+)/Mg^(2+) co-doped cathodes in high voltage environments utilizing dual coordination
1
作者 Xuantian Feng Minjie Hou +5 位作者 Bowen Xu Yiyong Zhang Da Zhang Yun Zeng Yong Lei Feng Liang 《Materials Reports(Energy)》 2025年第1期43-52,共10页
Sodium-ion batteries(SIBs)are emerging as a promising alternative for large-scale energy storage,particularly in grid applications.Within the array of potential cathode materials,Fe/Mn-based layered oxides are notable... Sodium-ion batteries(SIBs)are emerging as a promising alternative for large-scale energy storage,particularly in grid applications.Within the array of potential cathode materials,Fe/Mn-based layered oxides are notable for their advantageous theoretical specific capacity,economic viability,and environmental sustainability.Nevertheless,the practical application of Fe/Mn-based layered oxides is constrained by their suboptimal cycle performance and rate capability during actual charging and discharging.Ion doping is an effective approach for addressing the aforementioned issues.In this context,we have successfully developed a novel K^(+) and Mg^(2+) codoped P2-Na_(0.7)Fe_(0.5)Mn_(0.5)O_(2) cathode to address these challenges.By doping with 0.05 K^(+) and 0.2 Mg^(2+),the cathode demonstrated excellent cycling stability,retaining 95% of its capacity after 50 cycles at 0.2C,whereas the undoped material retained only 59.7%.Even within a wider voltage range,the co-doped cathode retained 88% of its capacity after 100 cycles at 1C.This work integrated Mg^(2+) to activate oxygen redox reactions in Fe/Mn-based layered cathodes,thereby promoting a reversible hybrid redox process involving both anions and cations.Building on the Mg doping,larger K^(+) ions were introduced into the edge-sharing Na^(+) sites,enhancing the material's cyclic stability and expanding the interplanar distance.The significant improvement of Na^(+) diffusion coefficient by K^(+)/Mg^(2+) co-doping has been further confirmed via the galvanostatic intermittent titration technique(GITT).The study emphasizes the importance of co-doping with different coordination environments in future material design,aiming to achieve high operating voltage and energy density. 展开更多
关键词 Sodium-ion batteries P2 phase K^(+)/Mg^(2+)co-doped Lattice oxygen evolution
在线阅读 下载PDF
Is p-Type Doping in TeO_(2)Feasible? 被引量:1
2
作者 Zewen Xiao Chen Qiu +1 位作者 Su-Huai Wei Hideo Hosono 《Chinese Physics Letters》 2025年第1期114-122,共9页
Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not onl... Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity. 展开更多
关键词 doping BREAKTHROUGH attracting
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
3
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Self-assembled S-scheme In_(2.77)S_(4)/K^(+)-doped g-C_(3)N_(4)photocatalyst with selective O_(2) reduction pathway for efficient H_(2)O_(2) production using water and air
4
作者 Qiqi Zhang Hui Miao +2 位作者 Jun Wang Tao Sun Enzhou Liu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期176-189,共14页
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(... The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics. 展开更多
关键词 Photocatalysis H_(2)O_(2) production K^(+)-doped g-C_(3)N_(4) In_(2.77)S_(4) S-scheme heterojunction
在线阅读 下载PDF
Electromagnetic wave absorption and corrosion resistance performance of carbon nanoclusters/Ce-Mn codoped barium ferrite composite materials 被引量:1
5
作者 Bo Li Lin Ma +7 位作者 Sinan Li Jiewu Cui Xiaohui Liang Wei Sun Pengjie Zhang Nan Huang Song Ma Zhidong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期699-709,共11页
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific... To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future. 展开更多
关键词 electromagnetic wave absorption ANTICORROSION barium ferrite cerium and manganese doping carbon nanoclusters
在线阅读 下载PDF
Sc-doped strontium iron molybdenum cathode for high-efficiency CO_(2)electrolysis in solid oxide electrolysis cell
6
作者 LIU Zhen ZHANG Lihong +4 位作者 XU Chunming WANG Zhenhua QIAO Jinshuo SUN Wang SUN Kening 《燃料化学学报(中英文)》 北大核心 2025年第2期272-281,共10页
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p... Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability. 展开更多
关键词 solid oxide electrolysis cells CATHODE PEROVSKITE ELECTRO-CATALYSIS element doping
在线阅读 下载PDF
Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine
7
作者 SUN Xuehua MA Min +4 位作者 LIU Jianting TIAN Rui CHAI Hongmei CUI Huali GAO Loujun 《无机化学学报》 北大核心 2025年第3期561-573,共13页
We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.C... We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1). 展开更多
关键词 co⁃doped carbon dots 2 4⁃DNPH fluorescence detection
在线阅读 下载PDF
P,N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water
8
作者 HAN Yi-meng XIONG Hao +2 位作者 YANG Jia-ying WANG Jian-gan XU Fei 《新型炭材料(中英文)》 北大核心 2025年第1期211-221,共11页
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka... The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds. 展开更多
关键词 Alkaline hydrogen evolution ELECTROCATALYSTS Hollow carbon nanospheres Dual atoms doping Combined effect
在线阅读 下载PDF
Vanadium-site multivalent cation doping strategy of fluorophosphate cathode for low self-discharge sodium-ion batteries
9
作者 Xinyuan Wang Qian Wang +3 位作者 Jiakai Zhang Yuanzhen Ma Miao Huang Xiaojie Liu 《Journal of Energy Chemistry》 2025年第3期365-376,共12页
Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,i... Na_(3)V_(2)O_(2x)(PO_(4))_(2)F_(3-2x)(NVPOF)is considered one of the most promising cathode materials for sodium-ion batteries due to its favorable working potential and optimal theoretical specific capacity.However,its long-cycle and rate performance are significantly constrained by the low Na^(+)electronic conductivity of NVPOF.Furthermore,the prevalent self-discharge phenomenon restricts its applicability in practical applications.In this paper,the cathode material Na_(3)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(x=0.16)was synthesized by quantitatively introducing Fe^(3+)into the V-site of NVPOF.The introduction of Fe^(3+)significantly reduced the original bandgap and the energy barrier of NVPOF,as demonstrated through density functional theory calculations(DFT).When material x=0.16 is employed as the cathode material for the sodium-ion battery,the Na^(+)diffusion coefficient is significantly enhanced,exhibiting a lower activation energy of42.93 kJ mol^(-1).Consequently,material x=0.16 exhibits excellent electrochemical performance(rate capacity:57.32 mA h g^(-1)@10 C,cycling capacity:the specific capacity of 101.3 mA h g^(-1)can be stably maintained after 1000 cycles at 1 C current density).It can also achieve a full charge state in only2.39 min at a current density of 10 C while maintaining low energy loss across various stringent self-discharge tests.In addition,the sodium storage mechanism associated with the three-phase transition of Na_(X)V_(1.84)Fe_(0.16)(PO_(4))_(2)F_(3)(X=1,2,3)was elucidated by a series of experiments.In conclusion,this study presents a novel approach to multifunctional advanced sodium-ion battery cathode materials. 展开更多
关键词 Multivalent cation doping V-site doping Fe^(3+)doping SELF-DISCHARGE Fluorophosphate cathode Sodium-ion batteries
在线阅读 下载PDF
Unveiling the effect of molybdenum and titanium co-doping on degradation and electrochemical performance in Ni-rich cathodes
10
作者 Imesha Rambukwella Konstantin L.Firestein +3 位作者 Yanan Xu Ziqi Sun Shanqing Zhang Cheng Yan 《Materials Reports(Energy)》 2025年第1期32-42,共11页
In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable struc... In this work,we have applied molybdenum(Mo)and titanium(Ti)co-doping to solve the degradation of Ni-rich cathodes.The modified cathode,i.e.,Li(Ni_(0.89)Co_(0.05)Mn_(0.05)Mo_(0.005)Ti_(0.005))O_(2) holds a stable structure with expanded crystal lattice distance which improves Li ion diffusion kinetics.The dopants have suppressed the growth of primary particles,formed a coating on the surface,and promoted the elongated morphology.Moreover,the mechanical strength of these particles has increased,as confirmed by the nanoindentation test,which can help suppress particle cracking.The detrimental H2-H3 phase transition has been postponed by 90 mV allowing the cathode to operate at a higher voltage.A better cycling stability over 100 cycles with 69%capacity retention has been observed.We believe this work points out a way to improve the cycling performance,Coulombic efficiency and capacity retention in Ni-rich cathodes. 展开更多
关键词 Ni-rich cathode Mo doping Ti doping DEGRADATION Unsymmetrical phase transition Mechanical stress Particle cracking
在线阅读 下载PDF
Realized stable BP-N at ambient pressure by phosphorus doping
11
作者 Guo Chen Chengfeng Zhang +3 位作者 Yuanqin Zhu Bingqing Cao Jie Zhang Xianlong Wang 《Matter and Radiation at Extremes》 2025年第1期6-14,共9页
Black-phosphorus-structured nitrogen(BP-N)is an attractive high-energy-density material.However,high-pressure-synthesized BP-N will decompose at low pressure and cannot be quenched to ambient conditions.Finding a meth... Black-phosphorus-structured nitrogen(BP-N)is an attractive high-energy-density material.However,high-pressure-synthesized BP-N will decompose at low pressure and cannot be quenched to ambient conditions.Finding a method to stabilize it at 0 GPa is of great significance for its practical applications.However,unlike cubic gauche,layered polymeric,and hexagonal layered polymeric nitrogen(cg-N,LP-N,and HLP-N),it is always a metastable phase at high pressures up to 260 GPa,and decomposes into chains at 23 GPa.Here,on the basis of firstprinciples simulations,we find that P-atom doping can effectively reduce the synthesis pressure of BP-N and maintain its stability at 0 GPa.Uniform distribution of P-atom dopants within BP-N layers helps maintain the structural stability of these layers at 0 GPa,while interlayer electrostatic interaction induced by N-P dipoles enhances dynamic stability by eliminating interlayer slipping.Furthermore,pressure is conducive to enhancing the stability of BP-N and its doped forms by suppressing N-chain dissociation.For a configuration with 12.5%doping concentration,a gravimetric energy density of 8.07 kJ/g can be realized,which is nearly twice that of trinitrotoluene. 展开更多
关键词 doping PHOSPHORUS STABILITY
在线阅读 下载PDF
Is p-Type Doping in SeO_(2) Feasible?
12
作者 Zewen Xiao 《Chinese Physics Letters》 2025年第2期72-77,共6页
p-type transparent oxide semiconductors(TOSs)are significant in the semiconductor industry,driving advancements in optoelectronic technologies for transparent electronic devices with unique properties.The recent disco... p-type transparent oxide semiconductors(TOSs)are significant in the semiconductor industry,driving advancements in optoelectronic technologies for transparent electronic devices with unique properties.The recent discovery of p-type behavior in SeO_(2) has stimulated interest and confusion in the scientific community.In this Letter,we employ density functional theory calculations to reveal the intrinsic intrinsic insulating characteristics of SeO_(2) and highlight the substantial challenges in carrier doping.Our electronic structure analyses indicate that the Se 5^(2) states are energetically positioned too low to effectively interact with the O 2p orbitals,resulting in a valence band maximum(VBM)primarily dominated by the O 2p orbitals.The deep and localized nature of the VBM of SeO_(2) limits its potential as a high-mobility p-type TOS.Defect calculations demonstrate that all intrinsic defects in SeO_(2) exhibit deep transition levels within the bandgap.Regardless of the synthesis conditions,the Fermi level consistently resides in the mid-gap region.Furthermore,deep intrinsic acceptors and donors exhibit negative formation energies in the n-type and p-type regions,respectively,facilitating spontaneous formation and impeding external doping efforts.Thus,the reported p-type conductivity in SeO_(2) samples is unlikely to be intrinsic and is more plausibly attributable to reduced elemental Se,a well-known p-type semiconductor. 展开更多
关键词 doping TRANSPARENT driving
在线阅读 下载PDF
Crystal-Collapse-Induced Synthesis of High-Capacitance LaCoO_(x)/Co-Doped Carbon-Based Supercapacitors
13
作者 Zhihao Deng Yuanbo Wang +5 位作者 Wu Shao Jingwen He Jie Sheng Ronghao Cen Yufei Fu Wenjun Wu 《Transactions of Tianjin University》 2025年第1期29-41,共13页
The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and... The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and cobalt(Co)-doped nanoporous C(LaCoO_(x)/Co@ZNC)through the carbonization of Co/Zn-zeolitic imidazolate framework(ZIF)crystals derived from a PVP-Co/Zn/La precursor.The unique ZIF structure effectively disrupted the graphitic C framework,preserved the Co active sites,and enhanced the electrical conductivity.The synergistic interaction between pyridinic nitrogen and Co ions further promoted redox reactions.In addition,the formation of a hierarchical pore structure through zinc sublimation facili-tated electrolyte diffusion.The resulting LaCoO_(x)/Co@ZNC exhibited exceptional electrochemical performance,delivering a remarkable specific capacitance of 2,789 F/g at 1 A/g and outstanding cycling stability with 92%capacitance retention after 3,750 cycles.Our findings provide the basis for a promising approach to advancing C-based energy storage technologies. 展开更多
关键词 SUPERCAPACITOR High capacitance Carbon electrode doping Crystal-collapse
在线阅读 下载PDF
Efficiency improvement for post-sulfurized CIGS solar cells enabled by in situ Na doping
14
作者 Zeran Gao Yuchen Xiong +7 位作者 Jiawen Wang Shanshan Tian Wanlei Dai Haoyu Xu Xinzhan Wang Chao Gao Yali Sun Wei Yu 《Journal of Energy Chemistry》 2025年第2期324-332,I0007,共10页
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are... Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process. 展开更多
关键词 CIGS SULFURIZATION In situ doping DEFECT CBO
在线阅读 下载PDF
Preparation and performance of highly-conductive dual-doped Li_(7)La_(3)Zr_(2)O_(12)solid electrolytes for thermal batteries
15
作者 Wei Li Shu Zhang +5 位作者 Xinya Bu Jing Luo Yi Zhang Mengyu Yan Ting Quan Yanli Zhu 《Green Energy & Environment》 2025年第2期399-409,共11页
Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-... Garnet Li_(7)La_(3)Zr_(2)O_(12)(LLZO)electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance,particularly Ga-doped LLZO(LLZGO),which exhibits high ionic conductivity.However,the limited size of the Liþtransport bottleneck restricts its high-current discharging performance.The present study focuses on the synthesis of Ga^(3+)þand Ba^(2+)þco-doped LLZO(LLZGBO)and investigates the influence of doping contents on the morphology,crystal structure,Liþtransport bottleneck size,and ionic conductivity.In particular,Ga_(0.32)Ba_(0.15)exhibits the highest ionic conductivity(6.11E-2 S cm^(-1) at 550 C)in comparison with other compositions,which can be attributed to its higher-energy morphology,larger bottleneck and unique Liþtransport channel.In addition to Ba^(2+),Sr^(2+)þand Ca^(2+)have been co-doped with Ga3þinto LLZO,respectively,to study the effect of doping ion radius on crystal structures and the properties of electrolytes.The characterization results demonstrate that the easier Liþtransport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions.As a result,the assembled thermal battery with Ga_(0.32)Ba_(0.15)-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g^(-1) at an elevated temperature of 525℃.The discharge specific capacity of the thermal cell at 500 mA amounts to 63%of that at 100 mA,showcasing exceptional high-current discharging performance.When assembled as prototypes with fourteen single cells connected in series,the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm^(-2).These findings suggest that Ga,Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity,quick-initiating and high-current discharging thermal batteries. 展开更多
关键词 Element doping Thermal battery Solid electrolyte LLZO Ionic conductivity
在线阅读 下载PDF
Advances in metal-free carbon catalysts for acetylene hydrochlorination:From heteroatom doping to intrinsic defects over the past decade
16
作者 Shuhao Wei Guojun Lan +3 位作者 Yiyang Qiu Di Lin Wei Kong Ying Li 《Chinese Journal of Catalysis》 2025年第3期8-43,共36页
The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally... The development of metal-free carbon catalysts has garnered significant attention as a promising approach to address the challenges of sustainable catalysis,particularly in the replacement of toxic and environmentally hazardous mercury-based systems for the coal-based PVC industry.Within a decade of development,the catalytic performance of carbon catalysts has been improved greatly and even shows superiorities over metal catalysts in some cases,which have demonstrated great potential as sustainable alternatives to mercury catalysts.This review provides a comprehensive summary of the recent advancements in carbon catalysts for acetylene hydrochlorination.It encompasses a wide range of aspects,including the identification of active sites from heteroatom doping to intrinsic carbon defects,the various synthetic strategies employed,the reaction and deactivation mechanisms of carbon catalysts,and the current insights into the key challenges that are encountered on the journey from laboratory research to scalable commercialization within the field of carbon catalysts.The review offers foundational insights and practical guidelines for designing green carbon catalysts systems,not only for acetylene hydrochlorination but also for other heterogeneous catalytic reactions. 展开更多
关键词 METAL-FREE Carbon catalyst Acetylene hydrochlorination Heteroatom doping Defect engineering
在线阅读 下载PDF
16.48% Efficient solution-processed CIGS solar cells with crystal growth and defects engineering enabled by Ag doping strategy
17
作者 Mengyu Xu Shaocong Yan +9 位作者 Ting Liang Jia Jia Shengjie Yuan Dongxing Kou Zhengji Zhou Wenhui Zhou Yafang Qi Yuena Meng Litao Han Sixin Wu 《Journal of Energy Chemistry》 2025年第1期59-65,共7页
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro... Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells. 展开更多
关键词 CIGS solarcells Solution-processedmethod Ag doping Crystal growth Defects engineering
在线阅读 下载PDF
Improved rate and cycling performances of Na_(3)V_(2)(PO_(4))_(2)F_(2)O by Ti^(3+/4+)doping with two oxidation states for sodium cathodes
18
作者 Xiao-fei SUN Anastase NDAHIMANA +5 位作者 Ling-zhi WANG Zi-kang WANG Quan-sheng LI Wei TANG Min-xing YANG Xue-song MEI 《Transactions of Nonferrous Metals Society of China》 2025年第1期243-256,共14页
Ti at the oxidation states of Ti^(3+)and Ti^(4+),was used to enhance the performance of Na_(3)V_(2)(PO_(4))_(2)F_(2)O by partially substituting vanadium.After doping Ti,the crystallographic volume is decreased due to ... Ti at the oxidation states of Ti^(3+)and Ti^(4+),was used to enhance the performance of Na_(3)V_(2)(PO_(4))_(2)F_(2)O by partially substituting vanadium.After doping Ti,the crystallographic volume is decreased due to the less radii of Ti^(3+/4+),and the valence of Ti is demonstrated identical to V.During sodium insertion in Ti-doped Na_(3)V_(2)(PO_(4))_(2)F_(2)O,the two discharge plateaus split into three because of the rearrangement of local redox environment.Consequently,the optimized Na_(3)V_(0.96)Ti_(0.04)(PO_(4))_(2)F_(2)O shows a specific capacity of 123 and 63 mA·h/g at 0.1C and 20C,respectively.After 350 cycles at 0.5C,the capacity is gradually reduced corresponding to a retention of 71.05%.The significantly improved performance is attributed to the rapid electrochemical kinetics,and showcases the strategy of replacing V^(3+/4+)with Ti^(3+/4+)for high-performance vanadium-based oxyfluorophosphates. 展开更多
关键词 sodium vanadium oxyfluorophosphate titanium doping CATHODE sodium battery energy storage
在线阅读 下载PDF
High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation
19
作者 Ning Yu Fu-Li Wang +5 位作者 Xin-Yin Jiang Jin-Long Tan Mirabbos Hojamberdiev Han Hu Yong-Ming Chai Bin Dong 《Journal of Energy Chemistry》 2025年第3期208-217,共10页
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi... Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability. 展开更多
关键词 LaCoO_(3) Mn doping Acidic environment Dissolution-deposition equilibrium
在线阅读 下载PDF
Ru doping triggering reconstruction of cobalt phosphide for coupling glycerol electrooxidation with seawater electrolysis
20
作者 Binglu Deng Jie Shen +4 位作者 Jinxing Lu Chuqiang Huang Zhuoyuan Chen Feng Peng Yunpeng Liu 《Journal of Energy Chemistry》 2025年第1期317-326,共10页
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros... Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling. 展开更多
关键词 Glycerol electrooxidation Hydrogen evolution Ru doping Cobalt phosphide Bifunctional electrocatalysts
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部