Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 met...Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.展开更多
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli...Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes.展开更多
The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and san...The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and sandwich model lithium batteries consisting of Li metal | ionic liquid electrolyte | graphite electrode have been constructed and investigated by a series of in situ surface analysis platforms including atomic force microscopy, Raman and X-ray photoelectron spectroscopy. It is found that the choice of electrolyte, including the concentration and contents, has a profound effect on the SEI formation and evolution, and the subsequent ion intercalation. A smooth and compact SEI is preferably produced in highconcentration electrolytes, with FSI^(-) salt superior to TFSI^(-) salt, facilitating the lithiation/delithiation to achieve high capacity and excellent cycle stability, while suppressing the co-intercalation of electrolyte solvent ions. The innovative research scenario of well-defined model batteries in combination with multiple genuinely in situ surface analysis methods presented herein leads to insightful results, which provide valuable strategies for the rational design and optimization of practical batteries, and energy storage devices in general.展开更多
Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ...Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.展开更多
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid...Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.展开更多
The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,...The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.展开更多
The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind,solar...The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind,solar,and tidal power,to allow the broader implementation of the renewables.The gridoriented sodium-ion batteries,potassium ion batteries and multivalent ion batteries are cheaper and more sustainable alternatives to Li-ion,although they are still in the early stages of development.Additional optimisation of these battery systems is required,to improve the energy and power density,and to solve the safety issues caused by dendrites growth in anodes.Electrolyte,one of the most critical components in these batteries,could significantly influence the electrochemical performances and operations of batteries.In this review,the definitions and influences of three critical components(salts,solvents,and additives)in electrolytes are discussed.The significant advantages,challenges,recent progress and future optimisation directions of various electrolytes for monovalent and multivalent ions batteries(i.e.organic,ionic liquid and aqueous liquid electrolytes,polymer and inorganic solid electrolytes)are summarised to guide the practical application for grid-oriented batteries.展开更多
Electric vehicles have been promoted worldwide due to fast-charge technology of ion batteries.However,ion batteries’capacity and cycle life severely decay under extreme conditions,which is mostly related to electroly...Electric vehicles have been promoted worldwide due to fast-charge technology of ion batteries.However,ion batteries’capacity and cycle life severely decay under extreme conditions,which is mostly related to electrolyte conductivity drop and side reactions.This review highlights the safety and stability of ion batteries in terms of thermal stability,non-flammability,low-temperature,and so on,outlining the disadvantages of organic liquid electrolyte,and summarizing effective solutions of polymer electrolytes,solid-state electrolytes,ionic liquid electrolytes,and aqueous electrolytes for the batteries.Moreover,the outlook on the electrolytes is put forward,which is available for research and development of the next generation batteries.展开更多
Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density...Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density but usually at the expense of power density due to the large ion size,low ionic conductivity and high viscosity.Herein we demonstrate a simultaneous increase of the energy and power densities with ionic liquid electrolyte(EMIMBF4)mainly by enlarging the ion-transfer micropore channels of the electrode material,i.e.,the unique hierarchical carbon nanocages(hCNC).Boudouard reaction is adopted to tune the micropore size while remaining the hierarchical framework of hCNC.Meanwhile,the specific surface area,pore volume and conductivity are also increased under optimal activation temperature.Such a unique modification boosts the large-sized ion transfer,leading to the obvious decrease of equivalent series resistance and the dramatic increase of supercapacitive performance thereof.The optimized product exhibits an energy density up to 153.8 W h kg^(-1) at the power density of 1.8 kW kg^(-1),and maintains 54.0 W h kg^(-1) even at an ultrahigh power density of 480.1 kW kg^(-1).This study demonstrates an effective way to explore advanced electrode materials by the fine regulation of micropores and related properties.展开更多
基金supported by the National Basic Research Program of China (No. 2015CB251100)the Program for New Century Excellent Talents in University (NCET-13-0033)+1 种基金the Beijing Co-construction Project (No. 20150939014)the Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials
文摘Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education(NRF-2019R1A2C1084836,NRF-2018M1A2A2061994,and NRF-2021R1A4A2001403)the KU-KIST School Program。
文摘Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes.
基金financially supported by the National Key R&D Program of China(No.2016YFA0200200)the National Natural Science Foundation of China(Nos.21688102 and 21825203)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17020000)。
文摘The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and sandwich model lithium batteries consisting of Li metal | ionic liquid electrolyte | graphite electrode have been constructed and investigated by a series of in situ surface analysis platforms including atomic force microscopy, Raman and X-ray photoelectron spectroscopy. It is found that the choice of electrolyte, including the concentration and contents, has a profound effect on the SEI formation and evolution, and the subsequent ion intercalation. A smooth and compact SEI is preferably produced in highconcentration electrolytes, with FSI^(-) salt superior to TFSI^(-) salt, facilitating the lithiation/delithiation to achieve high capacity and excellent cycle stability, while suppressing the co-intercalation of electrolyte solvent ions. The innovative research scenario of well-defined model batteries in combination with multiple genuinely in situ surface analysis methods presented herein leads to insightful results, which provide valuable strategies for the rational design and optimization of practical batteries, and energy storage devices in general.
文摘Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.
基金supported by the International S&T Cooperation Program of China (2014DFA61670)the Key Program of National Natural Science Foundation of China (91434203)+1 种基金the International Cooperation and Exchange of the National Natural Science Foundation of China (51561145020)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010103)
文摘Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.
基金supported by the Climate Change Response Project(NRF-2019M1A2A2065612)the Basic Science Grant(NRF2019R1A4A1029237)+2 种基金the Korea-China Key Joint Research Program(2017K2A9A2A11070341)funded by the Ministry of Science and ICT,and by the 2019 Research Fund(1.190013.01)of UNISTsupport from‘‘Carbon to X Project”(Project No.2020M3H7A1098231)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea。
文摘The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.
文摘The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind,solar,and tidal power,to allow the broader implementation of the renewables.The gridoriented sodium-ion batteries,potassium ion batteries and multivalent ion batteries are cheaper and more sustainable alternatives to Li-ion,although they are still in the early stages of development.Additional optimisation of these battery systems is required,to improve the energy and power density,and to solve the safety issues caused by dendrites growth in anodes.Electrolyte,one of the most critical components in these batteries,could significantly influence the electrochemical performances and operations of batteries.In this review,the definitions and influences of three critical components(salts,solvents,and additives)in electrolytes are discussed.The significant advantages,challenges,recent progress and future optimisation directions of various electrolytes for monovalent and multivalent ions batteries(i.e.organic,ionic liquid and aqueous liquid electrolytes,polymer and inorganic solid electrolytes)are summarised to guide the practical application for grid-oriented batteries.
基金supported by National Natural Science Foundation of China(No.21706013)the State Key Laboratory of Automotive Safety and Energy(No.KFY2217).
文摘Electric vehicles have been promoted worldwide due to fast-charge technology of ion batteries.However,ion batteries’capacity and cycle life severely decay under extreme conditions,which is mostly related to electrolyte conductivity drop and side reactions.This review highlights the safety and stability of ion batteries in terms of thermal stability,non-flammability,low-temperature,and so on,outlining the disadvantages of organic liquid electrolyte,and summarizing effective solutions of polymer electrolytes,solid-state electrolytes,ionic liquid electrolytes,and aqueous electrolytes for the batteries.Moreover,the outlook on the electrolytes is put forward,which is available for research and development of the next generation batteries.
基金supported by the National Key Research and Development Program of China (2017YFA0206500and 2018YFA0209103)the National Natural Science Foundation of China (21832003, 21773111, 21573107 and 21971061)the Fundamental Research Funds for the Central Universities (020514380126)
文摘Increasing the energy density of supercapacitor without sacrificing its high power is an everlasting pursuit in energy storage.Using ionic liquid electrolyte with high operating voltage can increase the energy density but usually at the expense of power density due to the large ion size,low ionic conductivity and high viscosity.Herein we demonstrate a simultaneous increase of the energy and power densities with ionic liquid electrolyte(EMIMBF4)mainly by enlarging the ion-transfer micropore channels of the electrode material,i.e.,the unique hierarchical carbon nanocages(hCNC).Boudouard reaction is adopted to tune the micropore size while remaining the hierarchical framework of hCNC.Meanwhile,the specific surface area,pore volume and conductivity are also increased under optimal activation temperature.Such a unique modification boosts the large-sized ion transfer,leading to the obvious decrease of equivalent series resistance and the dramatic increase of supercapacitive performance thereof.The optimized product exhibits an energy density up to 153.8 W h kg^(-1) at the power density of 1.8 kW kg^(-1),and maintains 54.0 W h kg^(-1) even at an ultrahigh power density of 480.1 kW kg^(-1).This study demonstrates an effective way to explore advanced electrode materials by the fine regulation of micropores and related properties.