锂离子电池在研发和使用过程中,材料的表界面特性及其演变行为直接影响了电池的性能和应用。采用恰当的表面分析技术解析锂离子电池体系中表界面的组分、结构以及分布,有利于更好地探究界面性能优化,研究离子传输行为,以及分析电池失效...锂离子电池在研发和使用过程中,材料的表界面特性及其演变行为直接影响了电池的性能和应用。采用恰当的表面分析技术解析锂离子电池体系中表界面的组分、结构以及分布,有利于更好地探究界面性能优化,研究离子传输行为,以及分析电池失效机制。俄歇电子能谱(Auger electron spectroscopy,AES)是一种具有较高空间分辨率的电子束探针表面分析技术,可实现除H和He以外的大部分元素及其价态的定性和半定量分析,以及二维成像表征。本文介绍了俄歇电子能谱的技术原理、主要功能及分析方法,总结了其在锂离子电池研究中的应用案例及相关技巧,为AES表征技术在锂电池领域的广泛合理应用总结了经验,同时对AES技术在该领域的应用发展进行了展望。展开更多
All-solid-state batteries(ASSBs)using sulfide electrolytes hold promise for next-generation battery technology.Although using a pure Li metal anode is believed to maximize battery energy density,numerous recent studie...All-solid-state batteries(ASSBs)using sulfide electrolytes hold promise for next-generation battery technology.Although using a pure Li metal anode is believed to maximize battery energy density,numerous recent studies have implicated that Li-ion anodes(e.g.,graphite and Si)are more realistic candidates due to their interfacial compatibility with sulfide electrolytes.However,those Li-ion ASSBs suffer from an issue similar to liquid Li-ion batteries,which is a loss of active Li inventory owing to interfacial side reactions between electrode components,resulting in reduced available capacities and shortened cycle life.Herein,for the first time,we explore the potential of Li_(3)P for cathode prelithiation of Li-ion ASSBs.We identify that the crystallized Li_(3)P(c-Li_(3)P)has room-temperature ionic and electronic conductivities of both over 1o-4 s/cm.Such a mixed ion-electron conduct-ing feature ensures that the neat c-LisP affords a high Li+-releasing capacity of 983 mAh/g in ASSBs during the first charging.Moreover,the electro-chemical delithiation of c-LisP takes place below 2 V versus Li+/Li,while its lithiation dominates below 1 V versus Lit/Li.Once used as a cathode prelithiation regent for ASSBs,c-Li_(3)P only functions as a Li+donor without lithiation activity and can adequately compensate for the Li loss with minimal dosage added.Besides mitigating first-cycle Li loss,c-LisP prelithiation can also improve the battery cyclability by sustained release of low-dosage Li+ions in subsequent cycles,which have been embodied in several full ASSBs by coupling a LiCoO2 cathode with various types of anodes(including graphite,in foil,Sb,and Si anode).Our work provides a universal cathode prelithiation strategy for high-efficiency Li-ion AsSBs.展开更多
文摘锂离子电池在研发和使用过程中,材料的表界面特性及其演变行为直接影响了电池的性能和应用。采用恰当的表面分析技术解析锂离子电池体系中表界面的组分、结构以及分布,有利于更好地探究界面性能优化,研究离子传输行为,以及分析电池失效机制。俄歇电子能谱(Auger electron spectroscopy,AES)是一种具有较高空间分辨率的电子束探针表面分析技术,可实现除H和He以外的大部分元素及其价态的定性和半定量分析,以及二维成像表征。本文介绍了俄歇电子能谱的技术原理、主要功能及分析方法,总结了其在锂离子电池研究中的应用案例及相关技巧,为AES表征技术在锂电池领域的广泛合理应用总结了经验,同时对AES技术在该领域的应用发展进行了展望。
基金support from the National Natural Science Foundation of China(Nos.51972257,52172229,and 21401145)the Guangdong_Key Areas Research and Development Program(Nos.2020B090904001and2019B090909003)the Fundamental Research Funds for the Central Universities(No.2022IVA197).
文摘All-solid-state batteries(ASSBs)using sulfide electrolytes hold promise for next-generation battery technology.Although using a pure Li metal anode is believed to maximize battery energy density,numerous recent studies have implicated that Li-ion anodes(e.g.,graphite and Si)are more realistic candidates due to their interfacial compatibility with sulfide electrolytes.However,those Li-ion ASSBs suffer from an issue similar to liquid Li-ion batteries,which is a loss of active Li inventory owing to interfacial side reactions between electrode components,resulting in reduced available capacities and shortened cycle life.Herein,for the first time,we explore the potential of Li_(3)P for cathode prelithiation of Li-ion ASSBs.We identify that the crystallized Li_(3)P(c-Li_(3)P)has room-temperature ionic and electronic conductivities of both over 1o-4 s/cm.Such a mixed ion-electron conduct-ing feature ensures that the neat c-LisP affords a high Li+-releasing capacity of 983 mAh/g in ASSBs during the first charging.Moreover,the electro-chemical delithiation of c-LisP takes place below 2 V versus Li+/Li,while its lithiation dominates below 1 V versus Lit/Li.Once used as a cathode prelithiation regent for ASSBs,c-Li_(3)P only functions as a Li+donor without lithiation activity and can adequately compensate for the Li loss with minimal dosage added.Besides mitigating first-cycle Li loss,c-LisP prelithiation can also improve the battery cyclability by sustained release of low-dosage Li+ions in subsequent cycles,which have been embodied in several full ASSBs by coupling a LiCoO2 cathode with various types of anodes(including graphite,in foil,Sb,and Si anode).Our work provides a universal cathode prelithiation strategy for high-efficiency Li-ion AsSBs.