Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their w...Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their work,titled'Structure and regulation of the chromatin remodeller ISWI',in Nature(2016,540:466—469).Chromatin is the life blueprint of eukaryotes.Chromatin remodellers utilize the energy of ATP hydrolysis to move,destabilize,eject,or restructure nucleosomes,building and rebuilding the blueprint展开更多
Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynth...Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear.Here,we show that the chromatin remodeling complex Imitation of Switch(ISWI)promotes stamen filament elongation by regulating JA biosynthesis.We show that AT-Rich Interacting Domain 5(ARID5)interacts with CHR11,CHR17,and RLT1,several known subunits of ISWI.Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments.RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants.Consistently,the JA levels are drastically decreased in both arid5 and rlt mutants.Chromatin immunoprecipitationquantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes.Importantly,exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants,leading to the partial recovery of fertility.Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI,thereby promoting stamen filament elongation in Arabidopsis.展开更多
Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various bi...Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants,the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals.Recent studies determined whether and how the Arabidopsis SWI/SNF,ISWI,INO80,SWR1,and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis.Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized.These findings provide a basis for further studies of the molecular mechanisms by which the chromatinremodeling complexes function in plants.展开更多
文摘Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their work,titled'Structure and regulation of the chromatin remodeller ISWI',in Nature(2016,540:466—469).Chromatin is the life blueprint of eukaryotes.Chromatin remodellers utilize the energy of ATP hydrolysis to move,destabilize,eject,or restructure nucleosomes,building and rebuilding the blueprint
基金supported by the National Natural Science Foundation of China(31830045,32025005)。
文摘Plant reproduction requires the coordinated development of both male and female reproductive organs.Jasmonic acid(JA)plays an essential role in stamen filament elongation.However,the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear.Here,we show that the chromatin remodeling complex Imitation of Switch(ISWI)promotes stamen filament elongation by regulating JA biosynthesis.We show that AT-Rich Interacting Domain 5(ARID5)interacts with CHR11,CHR17,and RLT1,several known subunits of ISWI.Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments.RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants.Consistently,the JA levels are drastically decreased in both arid5 and rlt mutants.Chromatin immunoprecipitationquantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes.Importantly,exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants,leading to the partial recovery of fertility.Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI,thereby promoting stamen filament elongation in Arabidopsis.
基金supported by the National Natural Science Foundation of China(32025003)the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology。
文摘Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants,the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals.Recent studies determined whether and how the Arabidopsis SWI/SNF,ISWI,INO80,SWR1,and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis.Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized.These findings provide a basis for further studies of the molecular mechanisms by which the chromatinremodeling complexes function in plants.