The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT...The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E1/2 of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m-2.展开更多
Transition metal-based compounds can serve as pre-catalysts to obtain genuine oxygen evolution reaction(OER)electrocatalysts in the form of oxyhydroxides through electrochemical activation.However,the role and existen...Transition metal-based compounds can serve as pre-catalysts to obtain genuine oxygen evolution reaction(OER)electrocatalysts in the form of oxyhydroxides through electrochemical activation.However,the role and existence form of leached oxygen anions are still controversial.Herein,we selected iron selenite-wrapped hydrated nickel molybdate(denoted as NiMoO/FeSeO)as a pre-catalyst to study the oxyanion effect.It is surprising to find that SeO_(2)-exists in the catalyst in the form of intercalation,which is different from previous studies that suggest that anions are doped with residual elements after electrochemical activation,or adsorbed on the catalyst surface.The experiment and theoretical calculations show that the existence of SeO_(4)^(2-)intercalation effectively adjusts the electronic structure of NiFeOOH,promotes intramolecular electron transfer and O-O release,and thus lowers the reaction energy barrier.As expected,the synthesized NiFeOOH-SeO only needs 202 and 285 mV to attain 100 and 1000 mA cm^(-2)in 1 M KOH.Further,the anion exchange membrane water electrolyzer(AEMWE)consisting of NiFeOOHSeO anode and Pt/C cathode can reach 1 A cm^(-2)at 1.70 V and no significant attenuation within 300 h.Our findings provide insights into the mechanism,by which the intercalated oxyanions enhance the OER performance of NiFeOOH,thereby facilitating large-scale hydrogen production through AEMWE.展开更多
The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics,and transition metal dichalcogenides(TMDs)provide an ideal platform to study it benefiting from ...The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics,and transition metal dichalcogenides(TMDs)provide an ideal platform to study it benefiting from their highly tunable properties.In this article,the influence of Fe intercalation in NbSe_(2)was elaborately investigated using a combination of techniques.Magnetic studies have shown that the insertion of Fe atoms induces an antiferromagnetic state in which the easy axis aligns out of the plane.The sign reversal of the magnetoresistance across the Neel temperature can be satisfactorily explained by the moderate interaction between electrons and local spins.The Hall and Seebeck measurements reveal a multi-band nature,and the contribution of various phonon scattering processes is discussed based on the thermal conductivity and specific heat data.展开更多
BACKGROUND Intercalated duct lesions(IDLs)are considered relatively benign and rare tumors of salivary glands,that were only described recently.Their histopathological appearance may range from ductal hyperplasia to e...BACKGROUND Intercalated duct lesions(IDLs)are considered relatively benign and rare tumors of salivary glands,that were only described recently.Their histopathological appearance may range from ductal hyperplasia to encapsulated adenoma with hybrid patterns of both variants.It is thought that IDLs may be the precursor for malignant proliferations,therefore their correct diagnosis remains crucial for proper lesion management.It is the first reported IDL case arising from the accessory parotid gland(APG),which stands for less frequent but higher malignancy rate tumor developmental area.CASE SUMMARY A 24-years-old male with no accompanying diseases was referred to the hospital with a painless nodule on the right cheek.On physical examination,the stiff,immobile,and painless mass was palpable in the anterior portion of the right parotideomasseteric region,just superior to the parotid duct.Ultrasound examination demonstrated 1.5 cm×1.0 cm hypoechogenic mass on the anterior part of the right parotid gland.Ultrasound-guided fine needle aspiration cytology,followed by liquid-based fine needle aspiration biopsy were performed.However,the results were uninformative.A contrast-enhanced magnetic res-onance imaging(MRI)of the parotid was obtained,demonstrating a 1.5 cm×1.0 cm×0.5 cm tumor with high intensity capsule together with low intensity core in the very anterior part of right superficial lobe,situated in the APG.An MRI features were uncharacteristic to common parotid tumors,therefore surgical resection followed up.After histopathological examination,the final diagnosis of hybrid IDL was confirmed.CONCLUSION Fine needle aspiration biopsy might not always be diagnostic,and given the malignant potential,the surgical resection of such lesion remains the treatment of choice.展开更多
Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing t...Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of t...The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China.展开更多
Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan...Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan has affected their development.Herein,we report a metallic vanadium trioxide material intercalated with phase transformation as cathode applied in aqueous zinc-ion batteries.It offers satisfactory electrochemical performances with a high specific capacity(435 mAh g^(-1) at 0.5 A g^(-1)),decent power density(5.23 kW kg^(-1))and desired energy density(331 Wh kg^(-1)),as well as good cyclability.The superior performance originates from the stable structure and fast Zn^(2+)diffusion,enabled by the pre-intercalation of Zn^(2+)and water molecules.展开更多
The adsorption of CO_(2) on MgAl layered double hydroxides(MgAl-LDHs) based adsorbents has been an effective way to capture CO_(2),however the adsorption capacity was hampered due to the pore structure and the dispers...The adsorption of CO_(2) on MgAl layered double hydroxides(MgAl-LDHs) based adsorbents has been an effective way to capture CO_(2),however the adsorption capacity was hampered due to the pore structure and the dispersibility of adsorption active sites.To address the problem,we investigate the effect of intercalated anion and alkaline etching time on the structure,morphology and CO_(2) uptake performances of MgAl-LDHs.MgAl-LDHs are synthesized by the onepot hydrothermal method,followed by alkaline etching of NaOH,and characterized by x-ray diffraction,N_(2) adsorption,scanning electron microscopy and Fourier transform infrared spectroscopy.The CO_(2) adsorption tests of the samples are performed on a thermogravimetric analyzer,and the adsorption data are fitted by the first-order,pseudo-second-order and Elovich models,respectively.The results demonstrate that among the three intercalated samples,MgAl(Cl) using chloride salts as precursors possesses the highest adsorption capacity of CO_(2),owing to high crystallinity and porous structure,while MgAl(Ac) employing acetate salts as precursors displays the lowest CO_(2) uptake because of poor crystallinity,disorderly stacked structure and unsatisfactory pore structure.With regard to alkaline etching,the surface of the treated MgAl(Cl) is partly corroded,thus the specific surface area and pore volume increase,which is conducive to the exposure of adsorption active sites.Correspondingly,the adsorption performance of the alkaline-etched adsorbents is significantly improved,and MgAl(Cl)-6 has the highest CO_(2) uptake.With the alkaline etching time further increasing,the CO_(2) adsorption capacity of MgAl(Cl)-9 sharply decreases,mainly due to the collapse of pore structure and the fragmentized sheet-structure.Hence,the CO_(2) adsorption performance is greatly influenced by alkaline etching time,and appropriate alkaline etching time can facilitate the contact between CO_(2) molecules and the adsorbent.展开更多
Composites based on ultradispersed polytetrafluoroethylene and intercalated graphite oxide compounds with dodecahydro-closo-dodecaborates and methods of their fabrication have been developed. The fabricated composites...Composites based on ultradispersed polytetrafluoroethylene and intercalated graphite oxide compounds with dodecahydro-closo-dodecaborates and methods of their fabrication have been developed. The fabricated composites have been characterized using XRD analysis, and optical microscopy. These composites are distinguished with completeness of their combustion, since the combustion products comprise gaseous boron fluorine-containing compounds of boron, boron trifluoride (BF3), and boron oxyfluoride ((BOF)3). Besides, these composites are characterized with increased energy capacity as compared to purely oxygen-containing compounds, since the heat of formation of boron fluorine-containing compounds is higher than that of boron oxide. Introduction of ultradispersed polytetrafluoroethylene imparts composites with hydrophobicity, thus improving their functioning properties.展开更多
The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for t...The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large.展开更多
The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray ...The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray diffraction, transmission electron microscopy, stress-strain measurements in elongation.展开更多
1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<...The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<sub>i,i+1</sub> of the set A<sub>1</sub> to give maximum M-d. Some results to find optimal combina-tions of the elements of the set A<sub>1</sub> have been reported in part I. In this part, some rules forpermuting these elements are introduced. By means of these rules, three kinds of intercalated setsof A<sub>1</sub> have been found, namely: (1) Sets with an even left wing, (2) Sets with coincidence of bothwings, and (3) Sets with circulated elements.展开更多
Cost-effective,safe,and highly performing energy storage devices require rechargeable batteries,and among various options,aqueous zinc-ion batteries(ZIBs)have shown high promise in this regard.As a cathode material fo...Cost-effective,safe,and highly performing energy storage devices require rechargeable batteries,and among various options,aqueous zinc-ion batteries(ZIBs)have shown high promise in this regard.As a cathode material for the aqueous ZIBs,manganese dioxide(MnO_(2))has been found to be promising,but certain drawbacks of this cathode material are slow charge-transfer capability and poor cycling performance.Herein,a novel design of graphene quantum dots(GQDs)integrated with Zn-intercalated MnO_(2)nanosheets is put forward to construct a 3D nanoflower-like GQDs@ZnxMnO_(2)composite cathode for aqueous ZIBs.The synergistic coupling of GQDs modification with Zn intercalation provides abundant active sites and conductive medium to facilitate the ion/electron transmission,as well as ensure the GQDs@ZnxMnO_(2)composite cathode with enhanced charge-transfer capability and high electrochemical reversibility,which are elucidated by experiment results and in-situ Raman investigation.These impressive properties endow the GQDs@ZnxMnO_(2)composite cathode with superior aqueous Zn^(2+) storage capacity(~403.6 mAh·g^(−1)),excellent electrochemical kinetics,and good structural stability.For actual applications,the fabricated aqueous ZIBs can deliver a substantial energy density(226.8 W·h·kg^(−1)),a remarkable power density(650 W·kg^(−1)),and long-term cycle performance,further stimulating their potential application as efficient electrochemical storage devices for various energy-related fields.展开更多
Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of ph...Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of photogenerated charges in the bulk and poor catalytic water oxidation reactions at the surface that affect the water-splitting efficiency. In this work, the Cs intercalation strategy at the surface of BiVO_(4) is proposed for the enhanced water splitting to H_(2) and O_(2) productions via the effective separation and transportation photogenerated charges and improved surface catalytic water oxidation reactions. The Cs ions are found to intercalate at the surface of BiVO_(4) and regulate the oxygen vacancies to provide active O_(2) production sites and stability. The surface intercalation of Cs boosts the photocurrent to 1.89 mA cm^(-2)at 1.23 V vs.reference hydrogen electrode(RHE). A stoichiometric evolution of H_(2) and O_(2) is recorded with a faradaic efficiency of 92%. The open-circuit voltage measurements confirmed the increase in the carrier lifetime with the work function tuning upon Cs intercalation. The proposed Cs intercalation strategy suggests an effective route to suppress the charge recombination with an increase in carrier lifetime and charge separation in BiVO_(4) for the enhanced PEC application.展开更多
Pyrolytic graphite (PG) with highly aligned graphene layers,present anisotropic electrical and thermal transport behavior,which is attractive in electronic,electrocatalyst and energy storage.Such pristine PG could mee...Pyrolytic graphite (PG) with highly aligned graphene layers,present anisotropic electrical and thermal transport behavior,which is attractive in electronic,electrocatalyst and energy storage.Such pristine PG could meeting the limit of electrical conductivity (~2.5×10^(4) S·cm^(−1)),although efforts have been made for achieving high-purity sp^(2) hybridized carbon.For manipulating the electrical conductivity of PG,a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of AlCl_(4)^(-)into the graphitic interlayers.With the stage evolution at different voltages,variable electrical and thermal transport behaviors could be achieved via controlling AlCl_(4)^(-)concentrations in the PG because of substantial variation in the electronic density of states.Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions,and the in-plane electrical conductivity of the pristine PG (1.25×10^(4) S·cm^(−1)) could be massively promoted to 4.09×10^(4) S·cm(AlCl_(4)^(-)intercalated PG),much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding.The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.展开更多
In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridiniu...In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.展开更多
The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous...The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous attention.Owing to its small size,high polarity,and hydrogen bonding,water in the electrode materials,either in the form of structural water or cointercalated hydrated cations,drastically change the electrochemical behavior through multiple aspects.This review discusses the roles of water in aqueous batteries from how water molecules coordinate with cations to examples of watermediated reactions in different types of host materials.展开更多
The intercalation of foreign species into MXene, as an approach of tuning the interlayer environment, is employed to improve electrochemical ion storage behaviors. Herein, to understand the effect of confined ions by ...The intercalation of foreign species into MXene, as an approach of tuning the interlayer environment, is employed to improve electrochemical ion storage behaviors. Herein, to understand the effect of confined ions by the MXene layers on the performance of electrochemical energy storage, Zn^(2+) ions were employed to intercalate into MXene via an electrochemical technique. Zn^(2+) ions induced a shrink of the adjacent MXene layers. Meaningfully, a higher capacity of lithium ion storage was obtained after Zn^(2+) preintercalation. In order to explore the roles of the intercalated Zn^(2+) ions, the structural evolution, and the electronic migration among Zn, Ti and the surface termination were investigated to trace the origination of the higher Li^(+) storage capacity. The pre-intercalated Zn^(2+) ions lost electrons, meanwhile Ti of MXene obtained electrons. Moreover, a low-F surface functional groups was achieved. Contrary to the first shrink, after 200 cycles, a larger interlayer distance was monitored, this can accelerate the ion transport and offer a larger expansile space for lithium storage. This may offer a guidance to understand the roles of the confined ion by two-dimensional(2D) layered materials.展开更多
基金the financial support from the National Natural Science Foundation of China(No.22178307)China Southern Power Grid(Grant Nos.0470002022030103HX00002-01).
文摘The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E1/2 of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m-2.
基金supported by the National Natural Science Foundation of China(22075196,U22A20418,21878204)the Research Project Supported by Shanxi Scholarship Council of China(2022-050).
文摘Transition metal-based compounds can serve as pre-catalysts to obtain genuine oxygen evolution reaction(OER)electrocatalysts in the form of oxyhydroxides through electrochemical activation.However,the role and existence form of leached oxygen anions are still controversial.Herein,we selected iron selenite-wrapped hydrated nickel molybdate(denoted as NiMoO/FeSeO)as a pre-catalyst to study the oxyanion effect.It is surprising to find that SeO_(2)-exists in the catalyst in the form of intercalation,which is different from previous studies that suggest that anions are doped with residual elements after electrochemical activation,or adsorbed on the catalyst surface.The experiment and theoretical calculations show that the existence of SeO_(4)^(2-)intercalation effectively adjusts the electronic structure of NiFeOOH,promotes intramolecular electron transfer and O-O release,and thus lowers the reaction energy barrier.As expected,the synthesized NiFeOOH-SeO only needs 202 and 285 mV to attain 100 and 1000 mA cm^(-2)in 1 M KOH.Further,the anion exchange membrane water electrolyzer(AEMWE)consisting of NiFeOOHSeO anode and Pt/C cathode can reach 1 A cm^(-2)at 1.70 V and no significant attenuation within 300 h.Our findings provide insights into the mechanism,by which the intercalated oxyanions enhance the OER performance of NiFeOOH,thereby facilitating large-scale hydrogen production through AEMWE.
基金Project supported by the National Natural Science Foundation of China(Grant No.12274440)the National Key R&D Program of China(Grant No.2022YFA1403903)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33010100)the Fund of the Synergetic Extreme Condition User Facility(SECUF)。
文摘The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics,and transition metal dichalcogenides(TMDs)provide an ideal platform to study it benefiting from their highly tunable properties.In this article,the influence of Fe intercalation in NbSe_(2)was elaborately investigated using a combination of techniques.Magnetic studies have shown that the insertion of Fe atoms induces an antiferromagnetic state in which the easy axis aligns out of the plane.The sign reversal of the magnetoresistance across the Neel temperature can be satisfactorily explained by the moderate interaction between electrons and local spins.The Hall and Seebeck measurements reveal a multi-band nature,and the contribution of various phonon scattering processes is discussed based on the thermal conductivity and specific heat data.
文摘BACKGROUND Intercalated duct lesions(IDLs)are considered relatively benign and rare tumors of salivary glands,that were only described recently.Their histopathological appearance may range from ductal hyperplasia to encapsulated adenoma with hybrid patterns of both variants.It is thought that IDLs may be the precursor for malignant proliferations,therefore their correct diagnosis remains crucial for proper lesion management.It is the first reported IDL case arising from the accessory parotid gland(APG),which stands for less frequent but higher malignancy rate tumor developmental area.CASE SUMMARY A 24-years-old male with no accompanying diseases was referred to the hospital with a painless nodule on the right cheek.On physical examination,the stiff,immobile,and painless mass was palpable in the anterior portion of the right parotideomasseteric region,just superior to the parotid duct.Ultrasound examination demonstrated 1.5 cm×1.0 cm hypoechogenic mass on the anterior part of the right parotid gland.Ultrasound-guided fine needle aspiration cytology,followed by liquid-based fine needle aspiration biopsy were performed.However,the results were uninformative.A contrast-enhanced magnetic res-onance imaging(MRI)of the parotid was obtained,demonstrating a 1.5 cm×1.0 cm×0.5 cm tumor with high intensity capsule together with low intensity core in the very anterior part of right superficial lobe,situated in the APG.An MRI features were uncharacteristic to common parotid tumors,therefore surgical resection followed up.After histopathological examination,the final diagnosis of hybrid IDL was confirmed.CONCLUSION Fine needle aspiration biopsy might not always be diagnostic,and given the malignant potential,the surgical resection of such lesion remains the treatment of choice.
基金supported by the National Research Foundation of Korea(NRF)grant sponsored by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金sponsored by National Natural Science Foundation of China(No.41902269)Chinese Universities Scientific Fund(2020TC095)。
文摘The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China.
基金financially supported by the National Natural Science Foundation of China(51872139,51902158,and 51903121)the Recruitment Program of Global Experts(1211019)+2 种基金the“Six Talent Peak”Project of Jiangsu Province(XCL-043,XCL-021 and XCL-018)the Natural Science Foundation of Jiangsu Higher Education Institutions(19KJB430002 and 18KJB150016)the start-up fund from Nanjing Tech University(3983500197 and 3827401784)。
文摘Aqueous zinc-ion batteries have broad application prospects due to the eco-friendliness,cost-economy and high safety.However,the scarcity of high-performance cathodes with outstanding rate capability and long lifespan has affected their development.Herein,we report a metallic vanadium trioxide material intercalated with phase transformation as cathode applied in aqueous zinc-ion batteries.It offers satisfactory electrochemical performances with a high specific capacity(435 mAh g^(-1) at 0.5 A g^(-1)),decent power density(5.23 kW kg^(-1))and desired energy density(331 Wh kg^(-1)),as well as good cyclability.The superior performance originates from the stable structure and fast Zn^(2+)diffusion,enabled by the pre-intercalation of Zn^(2+)and water molecules.
基金Project supported by the National Natural Science Foundation of China(Grant No.21606058)the Natural Science Foundation of Guangxi,China(Grant Nos.2017GXNSFBA198193 and 2017GXNSFBA198124)the Startup Foundation for Doctors of Guilin University of Technology(Grant No.GLUTQD2015008)。
文摘The adsorption of CO_(2) on MgAl layered double hydroxides(MgAl-LDHs) based adsorbents has been an effective way to capture CO_(2),however the adsorption capacity was hampered due to the pore structure and the dispersibility of adsorption active sites.To address the problem,we investigate the effect of intercalated anion and alkaline etching time on the structure,morphology and CO_(2) uptake performances of MgAl-LDHs.MgAl-LDHs are synthesized by the onepot hydrothermal method,followed by alkaline etching of NaOH,and characterized by x-ray diffraction,N_(2) adsorption,scanning electron microscopy and Fourier transform infrared spectroscopy.The CO_(2) adsorption tests of the samples are performed on a thermogravimetric analyzer,and the adsorption data are fitted by the first-order,pseudo-second-order and Elovich models,respectively.The results demonstrate that among the three intercalated samples,MgAl(Cl) using chloride salts as precursors possesses the highest adsorption capacity of CO_(2),owing to high crystallinity and porous structure,while MgAl(Ac) employing acetate salts as precursors displays the lowest CO_(2) uptake because of poor crystallinity,disorderly stacked structure and unsatisfactory pore structure.With regard to alkaline etching,the surface of the treated MgAl(Cl) is partly corroded,thus the specific surface area and pore volume increase,which is conducive to the exposure of adsorption active sites.Correspondingly,the adsorption performance of the alkaline-etched adsorbents is significantly improved,and MgAl(Cl)-6 has the highest CO_(2) uptake.With the alkaline etching time further increasing,the CO_(2) adsorption capacity of MgAl(Cl)-9 sharply decreases,mainly due to the collapse of pore structure and the fragmentized sheet-structure.Hence,the CO_(2) adsorption performance is greatly influenced by alkaline etching time,and appropriate alkaline etching time can facilitate the contact between CO_(2) molecules and the adsorbent.
文摘Composites based on ultradispersed polytetrafluoroethylene and intercalated graphite oxide compounds with dodecahydro-closo-dodecaborates and methods of their fabrication have been developed. The fabricated composites have been characterized using XRD analysis, and optical microscopy. These composites are distinguished with completeness of their combustion, since the combustion products comprise gaseous boron fluorine-containing compounds of boron, boron trifluoride (BF3), and boron oxyfluoride ((BOF)3). Besides, these composites are characterized with increased energy capacity as compared to purely oxygen-containing compounds, since the heat of formation of boron fluorine-containing compounds is higher than that of boron oxide. Introduction of ultradispersed polytetrafluoroethylene imparts composites with hydrophobicity, thus improving their functioning properties.
基金supported by Natural Science Foundation of China (Grant No. 41502278)National Natural Science Foundation of China (Grant No. 41272377)+1 种基金China Postdoctoral Science Foundation funded project (2015M582588)Science & Technology Project of Hubei Traffic and Transport Office of China (2011)
文摘The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large.
基金Chinese Education Ministry Foundation for Nankai University and Tianjin University Joint Academy
文摘The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray diffraction, transmission electron microscopy, stress-strain measurements in elongation.
基金supported by the National Natural Science Foundationthe National Key Technologies R&D Program (2011BAE28B01)the 863 Program (2013AA032501)
文摘1 Introduction Magnesium salts are very important by-product of salt lake industry in West China.Nearly 200 million cubic meters of waste brine are released to the environment
文摘The problem in practice of determining the proper combination of Z<sub>i</sub> in a set of changegears may be abstracted to the problem of finding the proper combination and permutation ofthe elements a<sub>i,i+1</sub> of the set A<sub>1</sub> to give maximum M-d. Some results to find optimal combina-tions of the elements of the set A<sub>1</sub> have been reported in part I. In this part, some rules forpermuting these elements are introduced. By means of these rules, three kinds of intercalated setsof A<sub>1</sub> have been found, namely: (1) Sets with an even left wing, (2) Sets with coincidence of bothwings, and (3) Sets with circulated elements.
基金financially supported by the National Nature Science Foundations of China (Nos. 52002157 and 51873083)the Nature Science Foundations of Jiangsu Province, China (No. BK20190976)
文摘Cost-effective,safe,and highly performing energy storage devices require rechargeable batteries,and among various options,aqueous zinc-ion batteries(ZIBs)have shown high promise in this regard.As a cathode material for the aqueous ZIBs,manganese dioxide(MnO_(2))has been found to be promising,but certain drawbacks of this cathode material are slow charge-transfer capability and poor cycling performance.Herein,a novel design of graphene quantum dots(GQDs)integrated with Zn-intercalated MnO_(2)nanosheets is put forward to construct a 3D nanoflower-like GQDs@ZnxMnO_(2)composite cathode for aqueous ZIBs.The synergistic coupling of GQDs modification with Zn intercalation provides abundant active sites and conductive medium to facilitate the ion/electron transmission,as well as ensure the GQDs@ZnxMnO_(2)composite cathode with enhanced charge-transfer capability and high electrochemical reversibility,which are elucidated by experiment results and in-situ Raman investigation.These impressive properties endow the GQDs@ZnxMnO_(2)composite cathode with superior aqueous Zn^(2+) storage capacity(~403.6 mAh·g^(−1)),excellent electrochemical kinetics,and good structural stability.For actual applications,the fabricated aqueous ZIBs can deliver a substantial energy density(226.8 W·h·kg^(−1)),a remarkable power density(650 W·kg^(−1)),and long-term cycle performance,further stimulating their potential application as efficient electrochemical storage devices for various energy-related fields.
基金supported by the Basic Research&Development Program (2020R1F1A105408412)the C1 Gas Refinery Program(2015M3D3A1A0106489931) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT,Republic of Korea。
文摘Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of photogenerated charges in the bulk and poor catalytic water oxidation reactions at the surface that affect the water-splitting efficiency. In this work, the Cs intercalation strategy at the surface of BiVO_(4) is proposed for the enhanced water splitting to H_(2) and O_(2) productions via the effective separation and transportation photogenerated charges and improved surface catalytic water oxidation reactions. The Cs ions are found to intercalate at the surface of BiVO_(4) and regulate the oxygen vacancies to provide active O_(2) production sites and stability. The surface intercalation of Cs boosts the photocurrent to 1.89 mA cm^(-2)at 1.23 V vs.reference hydrogen electrode(RHE). A stoichiometric evolution of H_(2) and O_(2) is recorded with a faradaic efficiency of 92%. The open-circuit voltage measurements confirmed the increase in the carrier lifetime with the work function tuning upon Cs intercalation. The proposed Cs intercalation strategy suggests an effective route to suppress the charge recombination with an increase in carrier lifetime and charge separation in BiVO_(4) for the enhanced PEC application.
基金financially supported by the National Key R&D Program of China (No. 2018YFB0104400)the National Natural Science Foundation of China (Nos. 52074036, 51725401, and 51874019)Beijing Municipal Science and Technology Commission (No. Z191100002719007)
文摘Pyrolytic graphite (PG) with highly aligned graphene layers,present anisotropic electrical and thermal transport behavior,which is attractive in electronic,electrocatalyst and energy storage.Such pristine PG could meeting the limit of electrical conductivity (~2.5×10^(4) S·cm^(−1)),although efforts have been made for achieving high-purity sp^(2) hybridized carbon.For manipulating the electrical conductivity of PG,a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of AlCl_(4)^(-)into the graphitic interlayers.With the stage evolution at different voltages,variable electrical and thermal transport behaviors could be achieved via controlling AlCl_(4)^(-)concentrations in the PG because of substantial variation in the electronic density of states.Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions,and the in-plane electrical conductivity of the pristine PG (1.25×10^(4) S·cm^(−1)) could be massively promoted to 4.09×10^(4) S·cm(AlCl_(4)^(-)intercalated PG),much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding.The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.
基金supported by Natural Science Fund of Jiangsu Province (BK20141247, BK20140447)Exceptional Talent Project in Jiangsu Province (2015-XCL-035)+3 种基金University Science Research Project of Jiangsu Province (13KJB430005, 11KJA430008)funded by the Priority Academic Program development of Jiangsu Higher Education InstitutionsJiangsu Province universities' "blue and green blue project"financial support from the ARC (CE140100012, FT130100380, and DP170102267)
文摘In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.
基金The author would like to acknowledge the financial support from the U.S.Department of Energy's Office of Electricity under Contract no.70247A.
文摘The unprecedentedly growing demand for energy storage devices in recent years calls for diversified chemistries with unique advantages.When it comes to safety and cost,aqueous battery systems have attracted tremendous attention.Owing to its small size,high polarity,and hydrogen bonding,water in the electrode materials,either in the form of structural water or cointercalated hydrated cations,drastically change the electrochemical behavior through multiple aspects.This review discusses the roles of water in aqueous batteries from how water molecules coordinate with cations to examples of watermediated reactions in different types of host materials.
基金supported by the Development Plan of Science and Technology of Jilin Province (20190201309JC,YDZJ202101ZYTS187)the Project of Development and Reform Commission of Jilin Provinve (2019C042-1)+3 种基金the Science and Technology Research Project of Education Department of Jilin Province(JJKH20210453KJ, JJKH20210449KJ)the National Natural Science Foundation of China (51932005)the Liaoning Revitalization Talents Program (XLYC1807175)the Research Fund of Shenyang National Laboratory for Materials Science。
文摘The intercalation of foreign species into MXene, as an approach of tuning the interlayer environment, is employed to improve electrochemical ion storage behaviors. Herein, to understand the effect of confined ions by the MXene layers on the performance of electrochemical energy storage, Zn^(2+) ions were employed to intercalate into MXene via an electrochemical technique. Zn^(2+) ions induced a shrink of the adjacent MXene layers. Meaningfully, a higher capacity of lithium ion storage was obtained after Zn^(2+) preintercalation. In order to explore the roles of the intercalated Zn^(2+) ions, the structural evolution, and the electronic migration among Zn, Ti and the surface termination were investigated to trace the origination of the higher Li^(+) storage capacity. The pre-intercalated Zn^(2+) ions lost electrons, meanwhile Ti of MXene obtained electrons. Moreover, a low-F surface functional groups was achieved. Contrary to the first shrink, after 200 cycles, a larger interlayer distance was monitored, this can accelerate the ion transport and offer a larger expansile space for lithium storage. This may offer a guidance to understand the roles of the confined ion by two-dimensional(2D) layered materials.