AIM: To evaluate the 5-lipoxygenases (Loxs) expression level in human colorectal cancer specimens in order to determine its clinicopathologic significance in human tumorigenesis. METHODS: The relative quantity of 5-Lo...AIM: To evaluate the 5-lipoxygenases (Loxs) expression level in human colorectal cancer specimens in order to determine its clinicopathologic significance in human tumorigenesis. METHODS: The relative quantity of 5-Lox mRNA in paired 91 colorectal tumor and adjacent normal mucosa samples was determined by real time quantitative PCR. Additionally, the expression of 5-Lox and cyclooxygenase (Cox)-2 proteins was also examined using immunohistochemical staining methods. RESULTS: There was a marked increase in 5-Lox mRNA levels in the tumor compared with paired normal mucosa samples (P < 0.0001). Sixty six (72.5%) tumors showed high 5-Lox mRNA levels. The positivity rate of 5-Lox and Cox-2 protein expression was 68.7% and 79.1% respectively. There was a significant association between tumoral 5-Lox mRNA level and tumor size (Rho = 0.392, P = 0.0002), depth or vessel invasion. CONCLUSION: These results suggest that 5-Lox is up-regulated in colorectal cancer and that inhibition of its expression might be valuable in the prevention and treatment of colorectal cancer.展开更多
Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from o...Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 mu mol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between infla...The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.展开更多
The inhibitors of 5-LOX control the overproduction of pro-inflammatory mediators known as leukotrienes(LTs)and thus have therapeutic relevance in the treatment of various diseases like asthma,rheumatoid arthritis,infl...The inhibitors of 5-LOX control the overproduction of pro-inflammatory mediators known as leukotrienes(LTs)and thus have therapeutic relevance in the treatment of various diseases like asthma,rheumatoid arthritis,inflammatory bowel disease and certain types of cancers.This has increased the search for efficient therapeutic agents for protein 5-LOX and this process is now primarily based on QSAR.In this study,we have developed four different quantitative structure and 5-LOX inhibition activity relationship models of benzoquinone derivative by exploiting CoMFA,RF,SVM,and MLR chemometric methods.Performance of the QSAR models was measured by using cross-validation technique as well as through the external test set prediction.RF model outperforms all other models.SVM and MLR models failed due to the poor performance of the external test set prediction.CoMFA model,which shows relatively good performance was used to explore the essential structural regions where the modification was necessary to design a novel scaffold with improved activity.Moreover,molecular docking of all the derivatives to the binding site of 5-LOX was done to show their binding mode and to identify critical interacting residues inside the active site of 5-LOX.The docking result confirms the stability and rationality of the CoMFA model.展开更多
BACKGROUND Thin endometrium seriously affects endometrial receptivity,resulting in a significant reduction in embryo implantation,and clinical pregnancy and live birth rates,and there is no gold standard for treatment...BACKGROUND Thin endometrium seriously affects endometrial receptivity,resulting in a significant reduction in embryo implantation,and clinical pregnancy and live birth rates,and there is no gold standard for treatment.The main pathophysiological characteristics of thin endometrium are increased uterine arterial blood flow resistance,angiodysplasia,slow growth of the glandular epithelium,and low expression of vascular endothelial growth factor,resulting in endometrial epithelial cell(EEC)hypoxia and endometrial tissue aplasia.Human umbilical cord mesenchymal stem cells(HucMSCs)promote repair and regeneration of damaged endometrium by secreting microRNA(miRNA)-carrying exosomes.However,the initiation mechanism of HucMSCs to repair thin endometrium has not yet been clarified.AIM To determine the role of hypoxic-EEC-derived exosomes in function of HucMSCs and explore the potential mechanism.METHODS Exosomes were isolated from normal EECs(EEC-exs)and hypoxia-damaged EECs(EECD-exs),before characterization using Western blotting,nanoparticletracking analysis,and transmission electron microscopy.HucMSCs were cocultured with EEC-exs or EECD-exs and differentially expressed miRNAs were determined using sequencing.MiR-21-5p or miR-214-5p inhibitors or miR-21-3p or miR-214-5p mimics were transfected into HucMSCs and treated with a signal transducer and activator of transcription 3(STAT3)activator or STAT3 inhibitor.HucMSC migration was assessed by Transwell and wound healing assays.Differentiation of HucMSCs into EECs was assessed by detecting markers of stromal lineage(Vimentin and CD13)and epithelial cell lineage(CK19 and CD9)using Western blotting and immunofluorescence.The binding of the miRNAs to potential targets was validated by dual-luciferase reporter assay.RESULTS MiR-21-5p and miR-214-5p were lowly expressed in EECD-ex-pretreated HucMSCs.MiR-214-5p and miR-21-5p inhibitors facilitated the migratory and differentiative potentials of HucMSCs.MiR-21-5p and miR-214-5p targeted STAT3 and protein inhibitor of activated STAT3,respectively,and negatively regulated phospho-STAT3.MiR-21-5p-and miR-214-5p-inhibitor-induced promotive effects on HucMSC function were reversed by STAT3 inhibition.MiR-21-5p and miR-214-5p overexpression repressed HucMSC migration and differentiation,while STAT3 activation reversed these effects.CONCLUSION Low expression of miR-21-5p/miR-214-5p in hypoxic-EEC-derived exosomes promotes migration and differentiation of HucMSCs into EECs via STAT3 signaling.Exosomal miR-214-5p/miR-21-5p may function as valuable targets for thin endometrium.展开更多
Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in th...Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in the pathological progression of cerebral ischemia and neurodegenerative diseases including Parkinson disease(PD).Therefore,it is important to find effective therapeutic targets to attenuate inflammation and delay the progression of brain injury.Cysteinyl leukotrienes(CysLTs) are potent inflammatory mediators synthesized from arachidonic acid by 5-lipoxygenase(5-LOX) in the central nervous system.Two distinct G-protein-coupled receptors,CysLT1 R and CysLT2 R,mediate most of the known CysLTs biological responses.Accumulating evidence has demonstrated that postischemic inflammation and neuronal loss are mediated by 5-LOX and CysLTRs fol owing focal cerebral ischemia.We recently reported that the expression of 5-LOX,CysLT1R and inflammatory vascular cell adhesion molecule-1(VCAM-1) was upregulated in the hippocampus of rats with transient global cerebral ischemia,which was closely associated with delayed neuronal death in the hippocampal CA1 area.5-LOX inhibitor zileuton,CysLT1R antagonist ONO-1078 and montelukast dose-dependently reduced hippocampal CA1 neuronal death and inhibited the increased expression of 5-LOX and VCAM-1.In vitro ischemia-like injury in 5-LOXtransfected PC12 cells,oxygen-glucose deprivation(OGD) induced cell death mediated by5-LOX via ROS/P38 MAPK pathway.The nonselective 5-LOX inhibitor caffeic acid inhibited OGDstimulated activation of 5-LOX and ROS/P38 MAPK signaling and improved neuronal survival.In PD model,high concentrations of rotenone caused directly PC12 neurotoxicity,which was modulated by 5-LOX and abolished by suppression of 5-LOX.It is well known that microglia is major modulators of inflammatory response after brain injury.Overactivated microglia and production of proinflammatory cytokine IL-1β,IL-6 and TNF-α contribute to the neuroinflammation and brain injury.5-LOX,CysLT1R and CysLT2R are involved in microglial activation and resultant neurotoxic responses.It has been found that low concentrations of rotenone can activate 5-LOX and CysLT1R on microglial cells to enhance microglial inflammation and microglia-dependent neuronal death in vitro.5-LOX inhibitor zileuton and CysLT1R antagonist montelukast protected neurons from microglia-dependent rotenone neurotoxicity.Furthermore,lipopolysaccharide(LPS)induced microglial activation and microglial neurotoxicity mediated by CysLT2R in vitro.Both pharmacological blockade(CysLT2R antagonist HAMI3379) and RNA interference(specific short hairpin RNA) of CysLT2 R significantly attenuated LPS-triggered microglial inflammation and subsequent neuronal death.Collectively,the present results indicate the role of 5-LOX and CysLTRs in neuroinflammation and brain injury.Modulation of 5-LOX and CysLTRs may be potential therapeutic approaches for inflammation-related brain disorders such as cerebral ischemia and PD.However,further research is needed to clarify the mechanisms underlying the regulation of neuinflammatory processes by 5-LOX and CysLTRs.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal de...OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal death.In this study,we determined the effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast on neurotoxicity induced by 1-methyl-4-phenylpyridine(MPP+)in an in vitro model of Parkinson disease(PD).METHODS The neurotoxicity of MPP+,a neurotoxin relevant to PD,on the PC12 cells was measured by MTT assay,lactate dehydrogenase(LDH)release and double fluorescence staining with Hoechst/propidiumiodide(PI).The protective effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast were investigated by the above methods.RESULTS We found that exposure of PC12 cells to MPP+led to a reduced cell viability and an increased level of LDH in a concentration-dependent manner.Pretreatment with zileuton and montelukast significantly attenuated viability loss and LDH release in MPP+-treated PC12 cells.Furthermore,MPP+increasednecrotic cell death in PC12 cells.Administration of montelukast significantly decreased MPP+-induced cell necrosis in PC12 cells.CONCLUSION The 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast have a neuroprotective effects on MPP+-induced neurotoxicity in PC12 cells.The 5-LOX inhibitor and Cys LT1 antagonist might raise a possibility as potential therapeutic agent for PD and other inflammation-related the central nervous system disorders.展开更多
Background: Patients with intermediate to advanced hepatocellular carcinoma(HCC) are most commonly treated with transarterial chemoembolization(TACE). Previous studies showed that TACE combined with recombinant human ...Background: Patients with intermediate to advanced hepatocellular carcinoma(HCC) are most commonly treated with transarterial chemoembolization(TACE). Previous studies showed that TACE combined with recombinant human adenovirus type 5(H101) may provide a clinical survival benefit. In the present study, we aimed to determine the survival benefit of TACE with or without H101 for patients with intermediate to advanced HCC and to develop an e ective nomogram for predicting individual survival outcomes of these patients.Methods: We retrospectively collected data from 590 patients with intermediate to advanced HCC who were treated at Sun Yat?sen University Cancer Center between January 2007 and July 2015. After propensity score matching, 238 patients who received TACE with H101(TACE with H101 group) and 238 patients who received TACE without H101(TACE group) were analyzed. Overall survival(OS) was evaluated using the Kaplan–Meier method; the nomogram was developed based on Cox regression analysis. Discrimination and calibration were measured using the concordance index(c?index) and calibration plots.Results: Clinical and radiologic features were similar between the two groups. OS rates were significantly lower in the TACE group than in the TACE with H101 group(1?year OS rate, 53.8% vs. 61.3%; 2?year OS rate, 33.4% vs. 44.2%; 3?year OS rate, 22.4% vs. 40.5%; all P < 0.05). Multivariate Cox regression analysis for the entire cohort showed that alpha?fetoprotein level, alkaline phosphatase level, tumor size, metastasis, vascular invasion, and TACE with or without H101 were independent factors for OS, all of which were included in the nomogram. Calibration curves showed good agreement between nomogram?predicted survival and observed survival. The c?index of the nomogram for predict?ing OS was 0.716(95% confidence interval 0.686–0.746).Conclusions: TACE plus H101 extends the survival of patients with intermediate to advanced HCC. Our proposed nomogram provides individual survival prediction and stratification for patients with intermediate to advanced HCC who receive TACE with or without H101.展开更多
Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small ...Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. )展开更多
AIM To investigate the anticancer effect of a recombinant adenovirus-mediated p53(r Ad-p53) combined with 5-fluorouracil(5-FU) in human colon cancer resistant to 5-FU in vivo and the mechanism of r Ad-p53 in reversal ...AIM To investigate the anticancer effect of a recombinant adenovirus-mediated p53(r Ad-p53) combined with 5-fluorouracil(5-FU) in human colon cancer resistant to 5-FU in vivo and the mechanism of r Ad-p53 in reversal of 5-FU resistance.METHODS nude mice bearing human colon cancer SW480/5-FU(5-FU resistant) were randomly assigned to four groups(n = 25 each): control group, 5-FU group, r Ad-p53 group, and r Ad-p53 + 5-FU group. At 24 h, 48 h, 72 h, 120 h and 168 h after treatment, 5 mice were randomly selected from each group and sacrificed using an overdose of anesthetics. The tumors were removed and the protein expressions of p53, protein kinase C(PKC), permeability-glycoprotein(P-gp) and multidrug resistance-associated protein 1(MRP1)(Western blot) and apoptosis(TUNEL) were determined.RESULTS The area ratios of tumor cell apoptosis were larger in the r Ad/p53 + 5-FU group than that in the control, 5-FU and r Ad/p53 groups(P < 0.05), and were larger in the r Ad/p53 group than that of the control group(P < 0.05) and the 5-FU group at more than 48 h(P < 0.05). The p53 expression was higher in the r Ad/p53 and the r Ad/p53 + 5-FU groups than that of the control and 5-FU groups(P < 0.05), and were higher in the r Ad/p53 + 5-FU group than that of the r Ad/p53 group(P < 0.05). Overexpression of PKC, P-gp and MRP1 was observed in the 5-FU and control groups. In the r Ad/p53 + 5-FU group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups(P < 0.05), and the expression of PKC was lower than that of the control, 5-FU and r Ad/p53 groups at more than 48 h(P < 0.05). In the r Ad/p53 group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups at more than 48 h(P < 0.05), and the expression of PKC was lower than that of the control and 5-FU groups at more than 120 h(P < 0.05).CONCLUSION5-FU combined with r Ad-p53 has a synergistic anticancer effect in SW480/5-FU(5-FU resistance), which contributes to reversal of 5-FU resistance.展开更多
Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was t...Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.展开更多
Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for han...Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for hand, foot and mouth disease (HFMD) have been developed. Here we examined the potential of improving the vaccines by inserting the EV71 5’ untranslated region (5’ UTR) containing the full length internal ribosome entry site (IRES) sequence to the EV71 VP1-based DNA vaccine constructs. Four vaccine constructs designated as 5’ UTR-VP1/EGFP, VP1/EGFP, 5’ UTR-VP1/pVAX and VP1/pVAX, were designed using the pEGFP-N1 and pVAX-1 expression vectors, respectively. Transfection of Vero cells with the vaccine constructs with the 5’-UTR (5’-UTR-VP1/EGFP and 5’ UTR-VP1/pVAX) resulted in higher percentages of cells expressing the recombinant protein in comparison to cells transfected with vectors without the 5’-UTR (67% and 57%, respectively). Higher IgG responses (29%) were obtained from mice immunized with the DNA vaccine construct with the full length 5’ UTR. The same group of mice when challenged with life EV71 produced significantly higher neutralizing antibody (NAb) titers (>5-fold). These results suggest that insertion of the EV71 5’ UTR sequence consisting of the full length IRES to the EV71 DNA vaccine constructs improved the efficacy of the constructs with enhanced elicitation of the neutralizing antibody responses.展开更多
BACKGROUND: Numerous current studies have suggested that human telomerase reverse transcriptase (hTERT) gene has neuroprotective effects and can inhibit apoptosis induced by various cytotoxic stresses; however, the...BACKGROUND: Numerous current studies have suggested that human telomerase reverse transcriptase (hTERT) gene has neuroprotective effects and can inhibit apoptosis induced by various cytotoxic stresses; however, the mechanism of action remains unknown. OBJECTIVE: To evaluate the neuroprotective effects and possible mechanism of action of hTERT gene transfection in human embryonic cortical neurons treated with beta-amyloid fragment 25-35 (AI325-35). DESIGN, TIME AND SETTING: The randomized, controlled and molecular biological studies were performed at the Department of Anatomy and Brain Research, Zhongshan School of Medicine, Sun Yat-sen University, China, from September 2005 to June 2008. MATERIALS: AdEasy-1 Expression System was gifted by Professor Guoquan Gao from Sun Yat-Sen University, China. Human cortical neurons were derived from 12-20 week old aborted fetuses, obtained from the Guangzhou Maternal and Child Health Hospital, China. Mouse anti-Odk5 and mouse anti-p16 monoclonal antibodies (Lab Vision, USA), and mouse anti-hTERT monoclonal antibody (Epitomics, USA), were used in this study. METHODS: (1) Recombinant adenovirus vectors, encoding hTERT (Ad-hTERT) and green fluorescent protein (Ad-GFP), were constructed using the AdEasy-1 Expression System. Human embryonic cortical neurons in the Ad-hTERT group were transfected with Ad-hTERT for 1-21 days. Likewise, human embryonic cortical neurons in the Ad-GFP group were transfected with Ad-GFP for 1-21 days. Human embryonic cortical neurons in the control group were cultured as normal. (2) Human embryonic cortical neurons in the Ad-hTERT group were treated with 10 pmol/L Aβ25-35 for 24 hours. Normal human embryonic cortical neurons treated with 10 pmol/Lβ25.35 for 24 hours served as a model group. Human embryonic cortical neurons in the Ad-GFP and control groups were not treated with Aβ25-35. MAIN OUTCOME MEASURES: Expression of hTERT in human embryonic cortical neurons was evaluated by immunocytochemical staining and Western blot assay. Telomerase activity was measured using a PCR-based telomeric repeat amplification protocol (TRAP) ELISA kit. Neural activity in human embryonic cortical neurons was examined by MTT assay; apoptosis was measured using TUNEL assay; and Cdk5 and p16 protein expressions were measured by Western blot. RESULTS: Expression of hTERT protein was significantly increased and peaked at day 3 post-transfection in the Ad-hTERT group. No hTERT expression was detected in the Ad-GFP and control groups. Telomerase activity was significantly greater in the Ad-hTERT group compared with the Ad-GFP and control groups (P 〈 0.01). Compared with the control group, cell activity was significantly decreased (P 〈 0.05), and cell apoptotic rate, Cdk5 and p16 expression were significantly increased (P 〈 0.01) in the model group. Compared with the model group, cell activity was increased in the Ad-hTERT group, and peaked at day 3 post-transfection (P 〈 0.05). Neuroprotective effects also peaked at day 3 post-transfection; and the apoptotic rate, Cdk5 and p16 expression significantly decreased (P 〈 0.01). CONCLUSION: Expression of hTERT in human embryonic cortical neurons can relieve Aβ25-35-induced neuronal apoptosis. The possible mechanism by which hTERT produces these neuroprotective effects may be associated with inhibition of Cdk5 and p16 expression.展开更多
Kallikrein-related peptidases (KLKs) have been proposed as potential cancer biomarkers. Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLKs. Until now, detection of KLK5 in both biolo...Kallikrein-related peptidases (KLKs) have been proposed as potential cancer biomarkers. Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLKs. Until now, detection of KLK5 in both biological fluids and tissues has been described frequently due to the potential of being a new cancer biomarker. Our objective was to prepare KLK5 antibodies and establish an ELISA method for KLK5 to study the possible clinical application of KLK5 as a biomarker for malignancies. In this study, recombinant KLK5 protein was produced and purified using a prokaryotic expression system, and then used as immunogen to generate antibodies. High titers of specific antibodies were measured in serum of rabbits after the forth booster injection. And the titer of the antiserum reached 1:106. We have also generated monoclonal antibodies using hybridoma technology and the titer reached 1:105. The activity of KLK5 antibodies was characterized by Western blot and immunohistochemistry. To quantitatively examine KLK5 in serum samples, we established double antibody sandwich ELISA method using mouse mAb as capture and rabbit pAb as tracer antibody. We have detected KLK5 levels in ovarian cancer serum to ensure that our sandwich ELISA measurement to have high sensitivity and specificity. The ranges of linearity reached by the standard curves of the newly developed ELISA were 0.45 ng/mL to 125 ng/mL. The detection limit of the method, defined as the concentration of KLK5 can be distinguished, was 0.20 ng/mL. Median serum KLK5 levels were 3.77 ng/mL and 0.86 ng/mL in ovarian cancer patients and normal female, respectively (P ELISA assay for KLK5. Our preliminary findings prompt that KLK5 may be a new potential biomarker for the diagnosis and prognosis in patients with ovarian.展开更多
5-Fluorouracil (5-FU) has a broad spectrum of anti-tumor activity, widely applied to the treatment of cancers. However, it is necessary to determine the plasma concentration of 5-FU in clinical practice due to its nar...5-Fluorouracil (5-FU) has a broad spectrum of anti-tumor activity, widely applied to the treatment of cancers. However, it is necessary to determine the plasma concentration of 5-FU in clinical practice due to its narrow therapeutic index. Therefore, a simple, economic and sensitive high-performance liquid chromatography (HPLC) method was developed and validated for the determination of 5-FU in human plasma. Ethyl acetate was chosen as extraction reagent. Chromatographic separation was performed on a Diamonsil C18 column (250 mm × 4.6 mm i.d., 5 μm) with the mobile phase consisting of methanol and 20 mmol/L ammonium formate using a linear gradient elution at a flow rate of 0.8 mL/min. 5-FU and 5-bromouracil (5-BU) were detected by UV detector at 265 nm. The calibration curve was linear over the concentration range of 5—500 ng/mL and the correlation coefficient was not less than 0.992 6 for all calibration curves. The intra- and inter-day precisions were less than 10.5% and 4.3%, respectively, and the accuracy was within ±3.7%. The recovery at all concentration levels was 80.1±8.6%. 5-FU was stable under possible conditions of storing and handling. This method is proved applicable to therapeutic drug monitoring and pharmacokinetic studies of 5-FU in human.展开更多
Cervical cancer is a growing global disease in developing countries.Persistent infection with human papillomaviruses(HPV)is an essential causative agent in this type of cancer.Several studies demonstrate HPV E5 oncopr...Cervical cancer is a growing global disease in developing countries.Persistent infection with human papillomaviruses(HPV)is an essential causative agent in this type of cancer.Several studies demonstrate HPV E5 oncoprotein can impress the normal life cycle of HPV-infected cells by targeting some pivotal cellular signaling pathways,such as the epidermal growth factor receptor(EGFR)signaling pathway.In this study,we used E5-siRNA to knockdown that essential oncogene and considered the effect of E5 silencing on proliferation,apoptosis,cell cycle,apoptosis-related gene expression,and the initiator of the EGFR signaling pathway in cervical cancer cells.The results demonstrate that E5 plays an essential role in the proliferation and inhibited apoptosis in cervical cancer.Furthermore,silencing E5 reduces proliferation,increases apoptosis,and elevates related-genes expression of these malignant cells.Overall,E5 suppression may be appropriate for ameliorating cervical cancer progression.展开更多
文摘AIM: To evaluate the 5-lipoxygenases (Loxs) expression level in human colorectal cancer specimens in order to determine its clinicopathologic significance in human tumorigenesis. METHODS: The relative quantity of 5-Lox mRNA in paired 91 colorectal tumor and adjacent normal mucosa samples was determined by real time quantitative PCR. Additionally, the expression of 5-Lox and cyclooxygenase (Cox)-2 proteins was also examined using immunohistochemical staining methods. RESULTS: There was a marked increase in 5-Lox mRNA levels in the tumor compared with paired normal mucosa samples (P < 0.0001). Sixty six (72.5%) tumors showed high 5-Lox mRNA levels. The positivity rate of 5-Lox and Cox-2 protein expression was 68.7% and 79.1% respectively. There was a significant association between tumoral 5-Lox mRNA level and tumor size (Rho = 0.392, P = 0.0002), depth or vessel invasion. CONCLUSION: These results suggest that 5-Lox is up-regulated in colorectal cancer and that inhibition of its expression might be valuable in the prevention and treatment of colorectal cancer.
基金financial support from the National Natural Science Foundation of China(Grants Nos.91229204 and 81220108025)Major Project of Chinese National Programs for Fundamental Research and Development(No.2015CB910304)+2 种基金National High Technology Research and Development Program of China(No.2012AA020302)National Basic Research Program of China(No.2012CB518005)National S&T Major Projects(Nos.2012ZX09103101-072,2014ZX09507002-001,and 2013ZX09507-001)
文摘Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 mu mol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
文摘The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.
文摘The inhibitors of 5-LOX control the overproduction of pro-inflammatory mediators known as leukotrienes(LTs)and thus have therapeutic relevance in the treatment of various diseases like asthma,rheumatoid arthritis,inflammatory bowel disease and certain types of cancers.This has increased the search for efficient therapeutic agents for protein 5-LOX and this process is now primarily based on QSAR.In this study,we have developed four different quantitative structure and 5-LOX inhibition activity relationship models of benzoquinone derivative by exploiting CoMFA,RF,SVM,and MLR chemometric methods.Performance of the QSAR models was measured by using cross-validation technique as well as through the external test set prediction.RF model outperforms all other models.SVM and MLR models failed due to the poor performance of the external test set prediction.CoMFA model,which shows relatively good performance was used to explore the essential structural regions where the modification was necessary to design a novel scaffold with improved activity.Moreover,molecular docking of all the derivatives to the binding site of 5-LOX was done to show their binding mode and to identify critical interacting residues inside the active site of 5-LOX.The docking result confirms the stability and rationality of the CoMFA model.
基金Supported by the National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-080 and No.2022-PUMCH-C-064.
文摘BACKGROUND Thin endometrium seriously affects endometrial receptivity,resulting in a significant reduction in embryo implantation,and clinical pregnancy and live birth rates,and there is no gold standard for treatment.The main pathophysiological characteristics of thin endometrium are increased uterine arterial blood flow resistance,angiodysplasia,slow growth of the glandular epithelium,and low expression of vascular endothelial growth factor,resulting in endometrial epithelial cell(EEC)hypoxia and endometrial tissue aplasia.Human umbilical cord mesenchymal stem cells(HucMSCs)promote repair and regeneration of damaged endometrium by secreting microRNA(miRNA)-carrying exosomes.However,the initiation mechanism of HucMSCs to repair thin endometrium has not yet been clarified.AIM To determine the role of hypoxic-EEC-derived exosomes in function of HucMSCs and explore the potential mechanism.METHODS Exosomes were isolated from normal EECs(EEC-exs)and hypoxia-damaged EECs(EECD-exs),before characterization using Western blotting,nanoparticletracking analysis,and transmission electron microscopy.HucMSCs were cocultured with EEC-exs or EECD-exs and differentially expressed miRNAs were determined using sequencing.MiR-21-5p or miR-214-5p inhibitors or miR-21-3p or miR-214-5p mimics were transfected into HucMSCs and treated with a signal transducer and activator of transcription 3(STAT3)activator or STAT3 inhibitor.HucMSC migration was assessed by Transwell and wound healing assays.Differentiation of HucMSCs into EECs was assessed by detecting markers of stromal lineage(Vimentin and CD13)and epithelial cell lineage(CK19 and CD9)using Western blotting and immunofluorescence.The binding of the miRNAs to potential targets was validated by dual-luciferase reporter assay.RESULTS MiR-21-5p and miR-214-5p were lowly expressed in EECD-ex-pretreated HucMSCs.MiR-214-5p and miR-21-5p inhibitors facilitated the migratory and differentiative potentials of HucMSCs.MiR-21-5p and miR-214-5p targeted STAT3 and protein inhibitor of activated STAT3,respectively,and negatively regulated phospho-STAT3.MiR-21-5p-and miR-214-5p-inhibitor-induced promotive effects on HucMSC function were reversed by STAT3 inhibition.MiR-21-5p and miR-214-5p overexpression repressed HucMSC migration and differentiation,while STAT3 activation reversed these effects.CONCLUSION Low expression of miR-21-5p/miR-214-5p in hypoxic-EEC-derived exosomes promotes migration and differentiation of HucMSCs into EECs via STAT3 signaling.Exosomal miR-214-5p/miR-21-5p may function as valuable targets for thin endometrium.
基金The project supported by National Natural Science Foundation of China(81671188)Zhejiang Provincial Natural Science Foundation of China(LY12H31010)Key Laboratory of Hangzhou City Project(20090233T12)
文摘Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in the pathological progression of cerebral ischemia and neurodegenerative diseases including Parkinson disease(PD).Therefore,it is important to find effective therapeutic targets to attenuate inflammation and delay the progression of brain injury.Cysteinyl leukotrienes(CysLTs) are potent inflammatory mediators synthesized from arachidonic acid by 5-lipoxygenase(5-LOX) in the central nervous system.Two distinct G-protein-coupled receptors,CysLT1 R and CysLT2 R,mediate most of the known CysLTs biological responses.Accumulating evidence has demonstrated that postischemic inflammation and neuronal loss are mediated by 5-LOX and CysLTRs fol owing focal cerebral ischemia.We recently reported that the expression of 5-LOX,CysLT1R and inflammatory vascular cell adhesion molecule-1(VCAM-1) was upregulated in the hippocampus of rats with transient global cerebral ischemia,which was closely associated with delayed neuronal death in the hippocampal CA1 area.5-LOX inhibitor zileuton,CysLT1R antagonist ONO-1078 and montelukast dose-dependently reduced hippocampal CA1 neuronal death and inhibited the increased expression of 5-LOX and VCAM-1.In vitro ischemia-like injury in 5-LOXtransfected PC12 cells,oxygen-glucose deprivation(OGD) induced cell death mediated by5-LOX via ROS/P38 MAPK pathway.The nonselective 5-LOX inhibitor caffeic acid inhibited OGDstimulated activation of 5-LOX and ROS/P38 MAPK signaling and improved neuronal survival.In PD model,high concentrations of rotenone caused directly PC12 neurotoxicity,which was modulated by 5-LOX and abolished by suppression of 5-LOX.It is well known that microglia is major modulators of inflammatory response after brain injury.Overactivated microglia and production of proinflammatory cytokine IL-1β,IL-6 and TNF-α contribute to the neuroinflammation and brain injury.5-LOX,CysLT1R and CysLT2R are involved in microglial activation and resultant neurotoxic responses.It has been found that low concentrations of rotenone can activate 5-LOX and CysLT1R on microglial cells to enhance microglial inflammation and microglia-dependent neuronal death in vitro.5-LOX inhibitor zileuton and CysLT1R antagonist montelukast protected neurons from microglia-dependent rotenone neurotoxicity.Furthermore,lipopolysaccharide(LPS)induced microglial activation and microglial neurotoxicity mediated by CysLT2R in vitro.Both pharmacological blockade(CysLT2R antagonist HAMI3379) and RNA interference(specific short hairpin RNA) of CysLT2 R significantly attenuated LPS-triggered microglial inflammation and subsequent neuronal death.Collectively,the present results indicate the role of 5-LOX and CysLTRs in neuroinflammation and brain injury.Modulation of 5-LOX and CysLTRs may be potential therapeutic approaches for inflammation-related brain disorders such as cerebral ischemia and PD.However,further research is needed to clarify the mechanisms underlying the regulation of neuinflammatory processes by 5-LOX and CysLTRs.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金The project supported National Natural Science Foundation of China(81273491)the Zhejiang Provincial Natural Science Foundation(LY12H31010)
文摘OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal death.In this study,we determined the effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast on neurotoxicity induced by 1-methyl-4-phenylpyridine(MPP+)in an in vitro model of Parkinson disease(PD).METHODS The neurotoxicity of MPP+,a neurotoxin relevant to PD,on the PC12 cells was measured by MTT assay,lactate dehydrogenase(LDH)release and double fluorescence staining with Hoechst/propidiumiodide(PI).The protective effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast were investigated by the above methods.RESULTS We found that exposure of PC12 cells to MPP+led to a reduced cell viability and an increased level of LDH in a concentration-dependent manner.Pretreatment with zileuton and montelukast significantly attenuated viability loss and LDH release in MPP+-treated PC12 cells.Furthermore,MPP+increasednecrotic cell death in PC12 cells.Administration of montelukast significantly decreased MPP+-induced cell necrosis in PC12 cells.CONCLUSION The 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast have a neuroprotective effects on MPP+-induced neurotoxicity in PC12 cells.The 5-LOX inhibitor and Cys LT1 antagonist might raise a possibility as potential therapeutic agent for PD and other inflammation-related the central nervous system disorders.
文摘Background: Patients with intermediate to advanced hepatocellular carcinoma(HCC) are most commonly treated with transarterial chemoembolization(TACE). Previous studies showed that TACE combined with recombinant human adenovirus type 5(H101) may provide a clinical survival benefit. In the present study, we aimed to determine the survival benefit of TACE with or without H101 for patients with intermediate to advanced HCC and to develop an e ective nomogram for predicting individual survival outcomes of these patients.Methods: We retrospectively collected data from 590 patients with intermediate to advanced HCC who were treated at Sun Yat?sen University Cancer Center between January 2007 and July 2015. After propensity score matching, 238 patients who received TACE with H101(TACE with H101 group) and 238 patients who received TACE without H101(TACE group) were analyzed. Overall survival(OS) was evaluated using the Kaplan–Meier method; the nomogram was developed based on Cox regression analysis. Discrimination and calibration were measured using the concordance index(c?index) and calibration plots.Results: Clinical and radiologic features were similar between the two groups. OS rates were significantly lower in the TACE group than in the TACE with H101 group(1?year OS rate, 53.8% vs. 61.3%; 2?year OS rate, 33.4% vs. 44.2%; 3?year OS rate, 22.4% vs. 40.5%; all P < 0.05). Multivariate Cox regression analysis for the entire cohort showed that alpha?fetoprotein level, alkaline phosphatase level, tumor size, metastasis, vascular invasion, and TACE with or without H101 were independent factors for OS, all of which were included in the nomogram. Calibration curves showed good agreement between nomogram?predicted survival and observed survival. The c?index of the nomogram for predict?ing OS was 0.716(95% confidence interval 0.686–0.746).Conclusions: TACE plus H101 extends the survival of patients with intermediate to advanced HCC. Our proposed nomogram provides individual survival prediction and stratification for patients with intermediate to advanced HCC who receive TACE with or without H101.
基金supported by research grants from State 863 high technology R&D Project of China(2002AA205051and 2003AA205160)the National Key Rroject for Basic Research of China(2001CB509906)
文摘Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. )
基金Supported by the Natural Science Foundation of Guangdong,No.2015A030313732
文摘AIM To investigate the anticancer effect of a recombinant adenovirus-mediated p53(r Ad-p53) combined with 5-fluorouracil(5-FU) in human colon cancer resistant to 5-FU in vivo and the mechanism of r Ad-p53 in reversal of 5-FU resistance.METHODS nude mice bearing human colon cancer SW480/5-FU(5-FU resistant) were randomly assigned to four groups(n = 25 each): control group, 5-FU group, r Ad-p53 group, and r Ad-p53 + 5-FU group. At 24 h, 48 h, 72 h, 120 h and 168 h after treatment, 5 mice were randomly selected from each group and sacrificed using an overdose of anesthetics. The tumors were removed and the protein expressions of p53, protein kinase C(PKC), permeability-glycoprotein(P-gp) and multidrug resistance-associated protein 1(MRP1)(Western blot) and apoptosis(TUNEL) were determined.RESULTS The area ratios of tumor cell apoptosis were larger in the r Ad/p53 + 5-FU group than that in the control, 5-FU and r Ad/p53 groups(P < 0.05), and were larger in the r Ad/p53 group than that of the control group(P < 0.05) and the 5-FU group at more than 48 h(P < 0.05). The p53 expression was higher in the r Ad/p53 and the r Ad/p53 + 5-FU groups than that of the control and 5-FU groups(P < 0.05), and were higher in the r Ad/p53 + 5-FU group than that of the r Ad/p53 group(P < 0.05). Overexpression of PKC, P-gp and MRP1 was observed in the 5-FU and control groups. In the r Ad/p53 + 5-FU group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups(P < 0.05), and the expression of PKC was lower than that of the control, 5-FU and r Ad/p53 groups at more than 48 h(P < 0.05). In the r Ad/p53 group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups at more than 48 h(P < 0.05), and the expression of PKC was lower than that of the control and 5-FU groups at more than 120 h(P < 0.05).CONCLUSION5-FU combined with r Ad-p53 has a synergistic anticancer effect in SW480/5-FU(5-FU resistance), which contributes to reversal of 5-FU resistance.
文摘Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.
文摘Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for hand, foot and mouth disease (HFMD) have been developed. Here we examined the potential of improving the vaccines by inserting the EV71 5’ untranslated region (5’ UTR) containing the full length internal ribosome entry site (IRES) sequence to the EV71 VP1-based DNA vaccine constructs. Four vaccine constructs designated as 5’ UTR-VP1/EGFP, VP1/EGFP, 5’ UTR-VP1/pVAX and VP1/pVAX, were designed using the pEGFP-N1 and pVAX-1 expression vectors, respectively. Transfection of Vero cells with the vaccine constructs with the 5’-UTR (5’-UTR-VP1/EGFP and 5’ UTR-VP1/pVAX) resulted in higher percentages of cells expressing the recombinant protein in comparison to cells transfected with vectors without the 5’-UTR (67% and 57%, respectively). Higher IgG responses (29%) were obtained from mice immunized with the DNA vaccine construct with the full length 5’ UTR. The same group of mice when challenged with life EV71 produced significantly higher neutralizing antibody (NAb) titers (>5-fold). These results suggest that insertion of the EV71 5’ UTR sequence consisting of the full length IRES to the EV71 DNA vaccine constructs improved the efficacy of the constructs with enhanced elicitation of the neutralizing antibody responses.
基金the National Key Basic Research Program of China,No. 2006cb500700the National Natural Science Foundation of China,No.30470904the Natural Science and Technology Foundation of Guangdong Province,No. 04009356, 2008B030301320
文摘BACKGROUND: Numerous current studies have suggested that human telomerase reverse transcriptase (hTERT) gene has neuroprotective effects and can inhibit apoptosis induced by various cytotoxic stresses; however, the mechanism of action remains unknown. OBJECTIVE: To evaluate the neuroprotective effects and possible mechanism of action of hTERT gene transfection in human embryonic cortical neurons treated with beta-amyloid fragment 25-35 (AI325-35). DESIGN, TIME AND SETTING: The randomized, controlled and molecular biological studies were performed at the Department of Anatomy and Brain Research, Zhongshan School of Medicine, Sun Yat-sen University, China, from September 2005 to June 2008. MATERIALS: AdEasy-1 Expression System was gifted by Professor Guoquan Gao from Sun Yat-Sen University, China. Human cortical neurons were derived from 12-20 week old aborted fetuses, obtained from the Guangzhou Maternal and Child Health Hospital, China. Mouse anti-Odk5 and mouse anti-p16 monoclonal antibodies (Lab Vision, USA), and mouse anti-hTERT monoclonal antibody (Epitomics, USA), were used in this study. METHODS: (1) Recombinant adenovirus vectors, encoding hTERT (Ad-hTERT) and green fluorescent protein (Ad-GFP), were constructed using the AdEasy-1 Expression System. Human embryonic cortical neurons in the Ad-hTERT group were transfected with Ad-hTERT for 1-21 days. Likewise, human embryonic cortical neurons in the Ad-GFP group were transfected with Ad-GFP for 1-21 days. Human embryonic cortical neurons in the control group were cultured as normal. (2) Human embryonic cortical neurons in the Ad-hTERT group were treated with 10 pmol/L Aβ25-35 for 24 hours. Normal human embryonic cortical neurons treated with 10 pmol/Lβ25.35 for 24 hours served as a model group. Human embryonic cortical neurons in the Ad-GFP and control groups were not treated with Aβ25-35. MAIN OUTCOME MEASURES: Expression of hTERT in human embryonic cortical neurons was evaluated by immunocytochemical staining and Western blot assay. Telomerase activity was measured using a PCR-based telomeric repeat amplification protocol (TRAP) ELISA kit. Neural activity in human embryonic cortical neurons was examined by MTT assay; apoptosis was measured using TUNEL assay; and Cdk5 and p16 protein expressions were measured by Western blot. RESULTS: Expression of hTERT protein was significantly increased and peaked at day 3 post-transfection in the Ad-hTERT group. No hTERT expression was detected in the Ad-GFP and control groups. Telomerase activity was significantly greater in the Ad-hTERT group compared with the Ad-GFP and control groups (P 〈 0.01). Compared with the control group, cell activity was significantly decreased (P 〈 0.05), and cell apoptotic rate, Cdk5 and p16 expression were significantly increased (P 〈 0.01) in the model group. Compared with the model group, cell activity was increased in the Ad-hTERT group, and peaked at day 3 post-transfection (P 〈 0.05). Neuroprotective effects also peaked at day 3 post-transfection; and the apoptotic rate, Cdk5 and p16 expression significantly decreased (P 〈 0.01). CONCLUSION: Expression of hTERT in human embryonic cortical neurons can relieve Aβ25-35-induced neuronal apoptosis. The possible mechanism by which hTERT produces these neuroprotective effects may be associated with inhibition of Cdk5 and p16 expression.
文摘Kallikrein-related peptidases (KLKs) have been proposed as potential cancer biomarkers. Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLKs. Until now, detection of KLK5 in both biological fluids and tissues has been described frequently due to the potential of being a new cancer biomarker. Our objective was to prepare KLK5 antibodies and establish an ELISA method for KLK5 to study the possible clinical application of KLK5 as a biomarker for malignancies. In this study, recombinant KLK5 protein was produced and purified using a prokaryotic expression system, and then used as immunogen to generate antibodies. High titers of specific antibodies were measured in serum of rabbits after the forth booster injection. And the titer of the antiserum reached 1:106. We have also generated monoclonal antibodies using hybridoma technology and the titer reached 1:105. The activity of KLK5 antibodies was characterized by Western blot and immunohistochemistry. To quantitatively examine KLK5 in serum samples, we established double antibody sandwich ELISA method using mouse mAb as capture and rabbit pAb as tracer antibody. We have detected KLK5 levels in ovarian cancer serum to ensure that our sandwich ELISA measurement to have high sensitivity and specificity. The ranges of linearity reached by the standard curves of the newly developed ELISA were 0.45 ng/mL to 125 ng/mL. The detection limit of the method, defined as the concentration of KLK5 can be distinguished, was 0.20 ng/mL. Median serum KLK5 levels were 3.77 ng/mL and 0.86 ng/mL in ovarian cancer patients and normal female, respectively (P ELISA assay for KLK5. Our preliminary findings prompt that KLK5 may be a new potential biomarker for the diagnosis and prognosis in patients with ovarian.
基金Supported by National Natural Science Foundation of China (No. 30630075 and 20675056)Major State Basic Research Development Program of China ("973" Program) (No. 2006CB933303)
文摘5-Fluorouracil (5-FU) has a broad spectrum of anti-tumor activity, widely applied to the treatment of cancers. However, it is necessary to determine the plasma concentration of 5-FU in clinical practice due to its narrow therapeutic index. Therefore, a simple, economic and sensitive high-performance liquid chromatography (HPLC) method was developed and validated for the determination of 5-FU in human plasma. Ethyl acetate was chosen as extraction reagent. Chromatographic separation was performed on a Diamonsil C18 column (250 mm × 4.6 mm i.d., 5 μm) with the mobile phase consisting of methanol and 20 mmol/L ammonium formate using a linear gradient elution at a flow rate of 0.8 mL/min. 5-FU and 5-bromouracil (5-BU) were detected by UV detector at 265 nm. The calibration curve was linear over the concentration range of 5—500 ng/mL and the correlation coefficient was not less than 0.992 6 for all calibration curves. The intra- and inter-day precisions were less than 10.5% and 4.3%, respectively, and the accuracy was within ±3.7%. The recovery at all concentration levels was 80.1±8.6%. 5-FU was stable under possible conditions of storing and handling. This method is proved applicable to therapeutic drug monitoring and pharmacokinetic studies of 5-FU in human.
基金supported by a grant from Tabriz University of Medical Sciences(Tbzmed)(376 and 1397).
文摘Cervical cancer is a growing global disease in developing countries.Persistent infection with human papillomaviruses(HPV)is an essential causative agent in this type of cancer.Several studies demonstrate HPV E5 oncoprotein can impress the normal life cycle of HPV-infected cells by targeting some pivotal cellular signaling pathways,such as the epidermal growth factor receptor(EGFR)signaling pathway.In this study,we used E5-siRNA to knockdown that essential oncogene and considered the effect of E5 silencing on proliferation,apoptosis,cell cycle,apoptosis-related gene expression,and the initiator of the EGFR signaling pathway in cervical cancer cells.The results demonstrate that E5 plays an essential role in the proliferation and inhibited apoptosis in cervical cancer.Furthermore,silencing E5 reduces proliferation,increases apoptosis,and elevates related-genes expression of these malignant cells.Overall,E5 suppression may be appropriate for ameliorating cervical cancer progression.