In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c...In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).展开更多
Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of p...Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells.展开更多
A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The i...A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved.展开更多
Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been pro...Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs.展开更多
Inverted perovskite solar cells(PVSCs)have recently made exciting progress,showing high power conversion efciencies(PCEs)of 25%in single-junction devices and 30.5%in silicon/perovskite tandem devices.The hole transpor...Inverted perovskite solar cells(PVSCs)have recently made exciting progress,showing high power conversion efciencies(PCEs)of 25%in single-junction devices and 30.5%in silicon/perovskite tandem devices.The hole transporting material(HTM)in an inverted PVSC plays an important role in determining the device performance,since it not only extracts/transports holes but also afects the growth and crystallization of perovskite flm.Currently,polymer and self-assembled monolayer(SAM)have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs,high stability and adaptability to large area devices.In this review,recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized,including molecular design strategies and the correlation between molecular structure and device performance.We hope this review can inspire further innovative development of HTMs for wide applications in highly efcient and stable inverted PVSCs and the tandem devices.展开更多
In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost sol...In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.展开更多
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien...In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs.展开更多
Continuous success has been achieved for solution-processed inorganic-organic hybrid perovskite solar cells(PVSCs) in the past several years, in which organic charge transporting materials play an important role. At...Continuous success has been achieved for solution-processed inorganic-organic hybrid perovskite solar cells(PVSCs) in the past several years, in which organic charge transporting materials play an important role. At present, most of the commonly used hole-transporting materials(HTMs) such as spiro-OMeTAD derivatives for PVSCs require additional chemical doping process to ensure sufficient conductivity and shift the Fermi level towards the HOMO level for efficient hole transport and collection. However, this doping process not only increases the complexity and cost of device fabrication, but also decreases the device stability. Thus development of efficient dopant-free HTMs for PVSCs is highly desirable and remains as a major challenge in this field. In this review, we will summarize the recent advances in the molecular design of dopant-free HTMs for PVSCs.展开更多
Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an...Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC.展开更多
Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells(PSCs).Therefore,developing cheap and efficient charge transport materials is of great significan...Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells(PSCs).Therefore,developing cheap and efficient charge transport materials is of great significance for the commercialization of PSCs.In this study,three low-cost hole transport materials(HTMs),specifically 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(N,N-bis(4-methoxyphenyl)aniline)(TP-H),4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-methoxy-N,N-bis(4-methoxy-phenyl)aniline)(TP-OMe),and 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-fluoro-N,N-bis(4-methoxyphenyl)aniline)(TP-F),were designed and synthesized using a bulky group-substi-tuted 2,2'-bithiophene core and methoxy-or F-functionalized triphenylamine derivatives.Compared to the HTMs without F atoms,TP-F using F substitution exhibited enhanced intermolecular packing,a lower highest occupied molecular orbital energy level,and increased hole mobility and conductivity.The PSC incorporating the doped TP-F as the hole transport layer achieved the highest power conversion efficiency(over 24%)among the three devices.The high performance of TP-F can be attributed to the passivation effect of S and F atoms on uncoordinated Pb2+within the perovskite(PVSK)film,which significantly reduces the density of defect states and the incidence of trap-mediated recombination in PSCs.This study demonstrates the effec-tiveness of the 3,3'-bis(4-methoxy-2,6-dimethylphenyl)-2,2'-bithiophene building block for constructing cost-effective HTMs and highlights the impact of F substitution on enhancing the photovoltaic performance of PSCs.展开更多
In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The p...In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed.展开更多
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and...Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.展开更多
Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. Ti...Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. TiOPc as HTM plays an important role in increasing the power conversion efficiency (PCE) by minimizing recombi- nation losses at the perovskite/Au interface because TiOPc as HTM can extract photogenerated holes from the perovskite and then transport quickly these charges to the back metal electrode. In the research, the β-TiOPc gives a higher PCE than α-TiOPc for the devices due to sufficient transfer dynamics, The β-TiOPc was applied in perovskite solar cells without clopping to afford an impressive PCE of 5.05% under AM 1.5G illumination at the thickness of 40 nm which is competitive with spiro-OMeTAD at the same condition. The present work suggests a guideline for optimizing the photovoltaic properties ofperovskite solar cells using the TiOPc as the HTM.展开更多
A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their inter[acial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein,...A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their inter[acial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein, NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wxAMPS (analysis of microelectronic and photonic structures)-lD. Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material (HTM) and perovskite layers. Meanwhile, the valence band offset (AEv) of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer. Additionally, a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface. Conversely, the AEv between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%.展开更多
Developing a bridge capping layer between perovskite and hole transport layer materials(HTMs)in the n-i-p perovskite solar cells(pero-SCs)is an effective approach to modify the morphology of HTMs and passivate the per...Developing a bridge capping layer between perovskite and hole transport layer materials(HTMs)in the n-i-p perovskite solar cells(pero-SCs)is an effective approach to modify the morphology of HTMs and passivate the perovskite simultaneously.Herein,we select the quinoxaline-based bifunctional passivation agent,quinoxalin-6-yl-methylamine hydrochloride(Qx MACl),as the bridging layer,and a D-A copolymer PBQ12 containing the same quinoxaline unit as an HTM for the n-i-p pero-SCs.Due to theπ-πstacking among the common quinoxaline units in the bridge layer and HTM,Qx MACl induces theπ-πstacking of the PBQ12 film and improves the film morphology of HTMs with better conductivity.Additionally,Qx MACl can effectively passivate the perovskite surface,and PBQ12 possesses appropriate energy levels and high hole mobility.The pero-SCs based on FAPbI_(3)with PBQ12/Qx MACl treatment showed a higher power conversion efficiency(PCE)of 24.05%and outstanding stability,maintaining 95.4%and 92.1%of its initial PCE after 750 h of storage and after over 800 h of thermal annealing at 85℃,respectively.To further enhance the PCE of the PBQ12/Qx MACl-based devices,we developed a non-metal ion dopant for the PBQ12 HTM.Through trace doping of PBQ12 HTM by the non-metal ion dopant,the PCE of the PBQ12/Qx MACl-based devices reached 25.24%(the calibrated PCE of 24.55%by the National Institute of Metrology,China).展开更多
Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and ...Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs.展开更多
Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as elec...Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction ofa 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-flee HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFS1). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%.展开更多
The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to imp...The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexib...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.展开更多
In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A ...In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A reference HTM with benzene core,coded as H-Ben,is also prepared for a comparative study.The effects of varying core on HTMs are investigated by comparing the photophysical,electrochemical and hole mobility properties.It is found that pyridine core exhibits better conjunction and decreased dihedral angles with triphenylamine side arms than that of benzene,leading to obviously better hole mobility and well-matched work function.The perovskite film prepared on H-Pyr also shows improved crystallization than on H-Ben.Photoluminescence and electrochemical impedance studies indicate improved charge extraction and reduced recombination in the H-Pyr-based perovskite solar cells.Consequently,H-Pyr-based device exhibits higher efficiency than H-Ben-based one.After doping with a Lewis acid,tris(pentafluorophenyl)borane,H-Pyr-based device delivers a champion efficiency of 17.09%,which is much higher compared with 12.14% of the device employing conventional poly(3,4-ethy lenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)as HTM.Moreover,the H-Pyr-based device displays good long-term stability that the power conversion efficiency remains over 80% of the initial value after storage in ambient(relative humidity=50±5%)for 20 days.展开更多
基金supported by the National Basic Research Program of China (No. 2015CB932200)the CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (No. 116134KYSB20160130)+2 种基金the Natural Science Foundation of Anhui Province (No. 1508085SMF224)the National Natural Science Foundation of China (No. 51474201)the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607)
文摘In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).
基金the National Key Research Development Program of China(2016YFA0602900)the National Natural Science Foundation of China(21272079,21572069)+1 种基金the Science and Technology Planning Project of Guangdong Province,China(2013B010405003)the fund from the Guangzhou Science and Technology Project,China(201607010265)
文摘Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1506400)the National Natural Science Foundation of China(Grant Nos.61904053,51702096,U1705256,51961165106)the Fundamental Research Funds for the Central Universities(Grant Nos.2019MS026,2019MS027,2020MS080)。
文摘A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved.
基金Zi'an Zhou and Xianfu Zhang contributed equally to this work.This work was supported by the National Key R&D Program ofChina(2018YFB1500101)the 111 Project(No.B16016)+1 种基金the National Natural Science Foundation of China(No.61904053,51702096,U1705256 and 51961165106)the FundamentalResearch Funds for the Central Universities(No.2019MSO_(2)6.2019MS027,and 2020MS080)。
文摘Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs.
基金support from the National Natural Science Foundation of China(Grant Nos.21975085 and 22175067)excellent Youth Foundation of Hubei Scientifc Committee(No.2021CFA065),the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)+2 种基金while ZZ thanks the fnancial support from the ECS grant(21301319)GRF grant(11306521)the Research Grants Council of Hong Kong,China,and Green Tech Fund(GTF202020164)。
文摘Inverted perovskite solar cells(PVSCs)have recently made exciting progress,showing high power conversion efciencies(PCEs)of 25%in single-junction devices and 30.5%in silicon/perovskite tandem devices.The hole transporting material(HTM)in an inverted PVSC plays an important role in determining the device performance,since it not only extracts/transports holes but also afects the growth and crystallization of perovskite flm.Currently,polymer and self-assembled monolayer(SAM)have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs,high stability and adaptability to large area devices.In this review,recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized,including molecular design strategies and the correlation between molecular structure and device performance.We hope this review can inspire further innovative development of HTMs for wide applications in highly efcient and stable inverted PVSCs and the tandem devices.
基金supported by the National Natural Science Foundation of China(Nos.21774015 and 21975027)NSFC-MAECI(No.51861135202).
文摘In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.
基金financial support from the Natural Science Foundation of China (grant numbers: 51661135021, 21606039, 91233201, and 21276044)
文摘In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs.
基金supported by grants from the National Natural Science Foundation of China(Nos. 21704030, 21602115)the financial support from the National 1000 Young Talents Program hosted by Chinathe independent innovation research funding from HUST
文摘Continuous success has been achieved for solution-processed inorganic-organic hybrid perovskite solar cells(PVSCs) in the past several years, in which organic charge transporting materials play an important role. At present, most of the commonly used hole-transporting materials(HTMs) such as spiro-OMeTAD derivatives for PVSCs require additional chemical doping process to ensure sufficient conductivity and shift the Fermi level towards the HOMO level for efficient hole transport and collection. However, this doping process not only increases the complexity and cost of device fabrication, but also decreases the device stability. Thus development of efficient dopant-free HTMs for PVSCs is highly desirable and remains as a major challenge in this field. In this review, we will summarize the recent advances in the molecular design of dopant-free HTMs for PVSCs.
文摘Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A20371,U21A2078,and 22179042)the Natural Science Foundation of Fujian Province(Grant No.2023J06034)+1 种基金the Natural Science Foundation of Xiamen,China(Grant No.3502Z20227036)the Scientific Research Funds of Huaqiao University(Grant No.605-50Y23024).
文摘Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells(PSCs).Therefore,developing cheap and efficient charge transport materials is of great significance for the commercialization of PSCs.In this study,three low-cost hole transport materials(HTMs),specifically 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(N,N-bis(4-methoxyphenyl)aniline)(TP-H),4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-methoxy-N,N-bis(4-methoxy-phenyl)aniline)(TP-OMe),and 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-fluoro-N,N-bis(4-methoxyphenyl)aniline)(TP-F),were designed and synthesized using a bulky group-substi-tuted 2,2'-bithiophene core and methoxy-or F-functionalized triphenylamine derivatives.Compared to the HTMs without F atoms,TP-F using F substitution exhibited enhanced intermolecular packing,a lower highest occupied molecular orbital energy level,and increased hole mobility and conductivity.The PSC incorporating the doped TP-F as the hole transport layer achieved the highest power conversion efficiency(over 24%)among the three devices.The high performance of TP-F can be attributed to the passivation effect of S and F atoms on uncoordinated Pb2+within the perovskite(PVSK)film,which significantly reduces the density of defect states and the incidence of trap-mediated recombination in PSCs.This study demonstrates the effec-tiveness of the 3,3'-bis(4-methoxy-2,6-dimethylphenyl)-2,2'-bithiophene building block for constructing cost-effective HTMs and highlights the impact of F substitution on enhancing the photovoltaic performance of PSCs.
基金This work was supported by Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2019B007)the Heilongjiang Provincial Postdoctoral Science Foundation(Grant No.LBH-TZ0604)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF2019042).
文摘In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed.
基金the National Natural Science Foundation of China(22065038)the Key Project of Natural Science Foundation of Yunnan(KC10110419)+4 种基金the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(K264202006820)the Program for Excellent Young Talents of Yunnan University and Major Science(C176220200)the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2019Z E001-1202002AB080001)for financial support。
文摘Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.
基金supported by the National Nature Science Foundation of China (NO.21206110)Tianjin Science and Technology Support Plan Key Projects (NO.13ZCZDGX00900)
文摘Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. TiOPc as HTM plays an important role in increasing the power conversion efficiency (PCE) by minimizing recombi- nation losses at the perovskite/Au interface because TiOPc as HTM can extract photogenerated holes from the perovskite and then transport quickly these charges to the back metal electrode. In the research, the β-TiOPc gives a higher PCE than α-TiOPc for the devices due to sufficient transfer dynamics, The β-TiOPc was applied in perovskite solar cells without clopping to afford an impressive PCE of 5.05% under AM 1.5G illumination at the thickness of 40 nm which is competitive with spiro-OMeTAD at the same condition. The present work suggests a guideline for optimizing the photovoltaic properties ofperovskite solar cells using the TiOPc as the HTM.
基金Project supported by the National High-tech Research and Development Program of China(Grant No.2015AA034601)the National Natural Science Foundation of China(Grant Nos.51772096,91333122,51372082,51402106,and 11504107)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20130036110012)the Par-Eu Scholars Program,Beijing Municipal Science and Technology Project,China(Grant No.Z161100002616039)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2016JQ01,2015ZZD03,2015ZD07,and 2017ZZD02)
文摘A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their inter[acial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein, NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wxAMPS (analysis of microelectronic and photonic structures)-lD. Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material (HTM) and perovskite layers. Meanwhile, the valence band offset (AEv) of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer. Additionally, a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface. Conversely, the AEv between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%.
基金supported by the National Key Research and Development Program of China(2019YFA0705900)the National Natural Science Foundation of China(52103243,61904181,52173188)+1 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB13)the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007)。
文摘Developing a bridge capping layer between perovskite and hole transport layer materials(HTMs)in the n-i-p perovskite solar cells(pero-SCs)is an effective approach to modify the morphology of HTMs and passivate the perovskite simultaneously.Herein,we select the quinoxaline-based bifunctional passivation agent,quinoxalin-6-yl-methylamine hydrochloride(Qx MACl),as the bridging layer,and a D-A copolymer PBQ12 containing the same quinoxaline unit as an HTM for the n-i-p pero-SCs.Due to theπ-πstacking among the common quinoxaline units in the bridge layer and HTM,Qx MACl induces theπ-πstacking of the PBQ12 film and improves the film morphology of HTMs with better conductivity.Additionally,Qx MACl can effectively passivate the perovskite surface,and PBQ12 possesses appropriate energy levels and high hole mobility.The pero-SCs based on FAPbI_(3)with PBQ12/Qx MACl treatment showed a higher power conversion efficiency(PCE)of 24.05%and outstanding stability,maintaining 95.4%and 92.1%of its initial PCE after 750 h of storage and after over 800 h of thermal annealing at 85℃,respectively.To further enhance the PCE of the PBQ12/Qx MACl-based devices,we developed a non-metal ion dopant for the PBQ12 HTM.Through trace doping of PBQ12 HTM by the non-metal ion dopant,the PCE of the PBQ12/Qx MACl-based devices reached 25.24%(the calibrated PCE of 24.55%by the National Institute of Metrology,China).
基金financially supported by the National Natural Science Foundation of China(Grants 21805114)Natural Science Foundation of Jiangsu province(BK20180867,BK20180869)+5 种基金China Postdoctoral Science Foundation(2019M651741)Six talent peaks project in Jiangsu province(XNY066)the Jiangsu University Foundation(17JDG032,17JDG031)High-tech Research Key laboratory of Zhenjiang(SS2018002)the high-performance computing platform of Jiangsu Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs.
基金supported by the Swedish Research CouncilK&A Wallenberg Foundation+2 种基金Swedish Energy AgencyNational Natural Science Foundation of China(21120102036,91233201)the National Basic Research Program of China(2014CB239402)
文摘Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction ofa 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-flee HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFS1). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%.
基金This work was financially supported by the National Natural Science Foundation of China(62074095)the Fundamental Research Funds for the Central Universities(GK202002001).
文摘The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.
基金jointly supported by the National Natural Science Foundation of China(No.62075223 and No.11674324)CAS Pioneer Hundred Talents Program of Chinese Academy of Sciences+5 种基金CAS-JSPS Joint Research Projects(GJHZ1891)Director Fund of Advanced Laser Technology Laboratory of Anhui Province(AHL2020ZR02)Key Lab of Photovoltaic and Energy Conservation Materials of Chinese Academy of Sciences(PECL2019QN005 and PECL2018QN001)the Natural Science Foundation of Top Talent of Shenzhen Technology University(No.2020101)Natural Science Research Project of Higher School of Anhui Province(KJ2020A0477)Initial Scientific Research Fund of Anhui Jianzhu University(No.2018QD60)。
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.
基金supported by the National Key R&D Program of China(2019YFB1503202)the 111 Project(B16016)+1 种基金the National Natural Science Foundation of China(61904053,51702096,U1705256 and 51572080)the Fundamental Research Funds for the Central Universities(2019MS026,2019MS027 and 2020MS080)。
文摘In the light of superior interaction between pyridine unit and perovskite,a facile star-shaped triphenylamine-based hole transport material(HTM)incorporating pyridine core(coded as H-Pyr)is designed and synthesized.A reference HTM with benzene core,coded as H-Ben,is also prepared for a comparative study.The effects of varying core on HTMs are investigated by comparing the photophysical,electrochemical and hole mobility properties.It is found that pyridine core exhibits better conjunction and decreased dihedral angles with triphenylamine side arms than that of benzene,leading to obviously better hole mobility and well-matched work function.The perovskite film prepared on H-Pyr also shows improved crystallization than on H-Ben.Photoluminescence and electrochemical impedance studies indicate improved charge extraction and reduced recombination in the H-Pyr-based perovskite solar cells.Consequently,H-Pyr-based device exhibits higher efficiency than H-Ben-based one.After doping with a Lewis acid,tris(pentafluorophenyl)borane,H-Pyr-based device delivers a champion efficiency of 17.09%,which is much higher compared with 12.14% of the device employing conventional poly(3,4-ethy lenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)as HTM.Moreover,the H-Pyr-based device displays good long-term stability that the power conversion efficiency remains over 80% of the initial value after storage in ambient(relative humidity=50±5%)for 20 days.