The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrou...The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrounding residential areas and infrastructure,and identify a shallow fault that extends across the center of the mountain and is perpendicular to the mountain slope and accurately locate the spatial position and depth of another fault on the southern side of the mountain.The results provide an important basis for evaluating mountain slope stability.This study also demonstrates that the high-density resistivity method is effective for detecting mountain faults.展开更多
By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards du...By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards during tunnel construction.We use the high-density resistivity method to analyze the subsurface structure of the study area.Conductive anomalies are likely to represent joint and fissure systems within strongly weathered host rocks,and the bedrock surrounding the tunnel is relatively stable and does not contain well-developed faults.High-density resistivity analysis can provide valuable information in the context of tunnel engineering and safety.展开更多
The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation a...The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation and water quality analysis,according to the change characteristics of apparent resistivity of groundwater after Cl-reaches 250 mg/L,the theoretical basis for the application of high-density resistivity method was determined,and the characteristic values of apparent resistivity for seawater intrusion interfaces in different geological characteristic regions in Laizhou Bay area were determined by typical profile tests.Combined with water quality investigation and other means,profiles for the high-density resistivity method were arranged,and the interfaces between saline and fresh water were accurately divided.展开更多
Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the auth...Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the authors used high-density resistivity method to detect the surrounding rocks of Shimodong tunnel in Xicheng Town of Helong City.The underground resistivity structures of the entrance,exit and middle parts of the tunnel are obtained.Through analysis,it is found that there are no bedrock faults near the tunnel,although some joints and fissures are developed in some locations,which are characterized by low-resistivity anomalies.The tunnel structures are stable overall,favorable for safe and efficient construction.The study also proves the good application effect of the high-density resistivity method in tunnel safety detection.展开更多
The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target fo...The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target for archaeological excavation in the southern part of the outer city.There are two obvious high-resistivity structures,the south wall of the inner city and an ancient building near the south gate along the outer city wall,of which the resistivities are indicative of rammed soil foundations.The south wall of the inner city is continuous but is cut off abruptly to the east,which we suggest it is due to either wall damage or destruction.The resistivity signature of the target area is verified by archaeological excavation,proving the feasibility and effectiveness of implementing the high-density resistivity method for archaeological exploration.展开更多
High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-...High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.展开更多
Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on...Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on subsurface characteristics. Initial analyses indicated a high geothermal gradient at a depth of 900 meters. However, further investigations revealed the presence of previously unmapped and stratigraphically unpositioned saline units, which are identified as the primary cause of low resistivity anomalies observed in Vertical Electrical Sounding (VES) data. Hydrogeochemical analysis of water samples collected from the Gözdöken Spring confirmed the presence of high sodium (1071 mg/L) and chloride (585 mg/L) concentrations, supporting the existence of these saline units. Using the Fournier & Rowe (1966) quartz geothermometer, a reservoir temperature of 61.88˚C was estimated, indicating a low- to medium-enthalpy geothermal system. These findings underscore the necessity for more detailed and integrated approaches to accurately assess the geothermal energy potential of the region.展开更多
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,...Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.展开更多
BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.Howeve...BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.展开更多
Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin...Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.展开更多
AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified int...AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified into two groups based on clinical activity score(CAS)scoring criteria:high CAS group(n=62,the CAS score was≥3);low CAS group(n=25,the CAS score was<3).In addition,a group of healthy people(n=114)were included to compared the MHR.Proptosis,MHR,average signal intensity ratio(SIR),average lacrimal gland(LG)-SIR,average extraocular muscles(EOM)area from 87 patients with TAO were calculated in magnetic resonance imaging(MRI),and compared between these two groups.Correlation testing was utilized to evaluate the association of parameters among the clinical variables.RESULTS:Patients in high CAS group had a higher proptosis(P=0.041)and MHR(P=0.048).Compared to the healthy group,the MHR in the TAO group was higher(P=0.001).Correlation testing declared that CAS score was strongly associated with proptosis and average SIR,and MHR was positively associated with CAS score,average SIR,and average LG-SIR.The area under the receiver operating characteristic curve(AUC)of MHR was 0.6755.CONCLUSION:MHR,a novel inflammatory biomarker,has a significant association with CAS score and MRI imaging(average SIR and LG-SIR)and it can be a new promising predictor during the active phase of TAO.展开更多
A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ign...A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.展开更多
In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a...In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.展开更多
The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced...The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.展开更多
BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial a...BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.展开更多
To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported....To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are -- 2 × 10-7 m2.K.W-1. Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials.展开更多
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria...Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.展开更多
With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is intr...With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.展开更多
The deterioration of shear resistance in rock and soil masses has resulted in numerous severe natural disasters,highlighting the significance of long-term monitoring for disaster prevention and mitigation.This study e...The deterioration of shear resistance in rock and soil masses has resulted in numerous severe natural disasters,highlighting the significance of long-term monitoring for disaster prevention and mitigation.This study explores the use of a non-destructive method to quickly and accurately evaluate the shear properties of soil-rock mixture.The shear stress,shear strain,and resistivity of the soil-rock mixture were tested simultaneously using a combination of direct shear and resistivity tests.The test results show that the resistivity of the soil-rock mixture gradually decreases with increasing shear strain.The resistivity of all specimens ranged approximately from 60 to 130Ω.m throughout the shear process.At the end of the shear test,the vertical failure resistivity showed an irregular“W”shape with increasing rock content.It exhibited a significant negative linear functional relationship with the shear strength.With reference to the determination of cohesion and internal friction angle on the shear strength envelope,the horizontal angle of the vertical failure resistivity-normal stress curve is defined as the resistivity angle,and the intercept of the curve is the resistivity at the initial moment of shear.It has been observed that the resistivity angle is negatively and linearly correlated with the internal friction angle.At the same time,there is a linear growth relationship between resistivity at the initial moment of shear and cohesion.It has been demonstrated that an increase in rock content contributes to a general escalation in both the average structure factor and average shape factor.Meanwhile,a decrease in the anisotropy coefficient has also been noted.These alterations are indicative of the extent of microstructural transformations occurring during the deformation process of the soil-rock mixture.The research results verify the feasibility of real-time deformation monitoring and characterization of shear strength parameters using resistivity.展开更多
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
基金Supported by National Key R&D Program of China and Fundamental Research Funds for the Central Universities(2017YFC0601305)。
文摘The authors employ the high-density resistivity method to image the subsurface structure of a mountain in Erdaojiang District,Tonghua City,Jilin Province,China,to evaluate the potential risk of slope failure on surrounding residential areas and infrastructure,and identify a shallow fault that extends across the center of the mountain and is perpendicular to the mountain slope and accurately locate the spatial position and depth of another fault on the southern side of the mountain.The results provide an important basis for evaluating mountain slope stability.This study also demonstrates that the high-density resistivity method is effective for detecting mountain faults.
基金Supported by The National Natural Science Foundation of China(41504076)Jilin Science and Technological Development Program(20180101093JC)。
文摘By determining the distribution and extent of geological structures surrounding the Mingyan Tunnel,Xicheng Town,Helong City,Jilin Province,we can evaluate the stability of the rock mass and assess potential hazards during tunnel construction.We use the high-density resistivity method to analyze the subsurface structure of the study area.Conductive anomalies are likely to represent joint and fissure systems within strongly weathered host rocks,and the bedrock surrounding the tunnel is relatively stable and does not contain well-developed faults.High-density resistivity analysis can provide valuable information in the context of tunnel engineering and safety.
文摘The disaster of seawater intrusion seriously affects people's lives and restricts economic development,so the detection and treatment of seawater intrusion is a long-term task.On the basis of field investigation and water quality analysis,according to the change characteristics of apparent resistivity of groundwater after Cl-reaches 250 mg/L,the theoretical basis for the application of high-density resistivity method was determined,and the characteristic values of apparent resistivity for seawater intrusion interfaces in different geological characteristic regions in Laizhou Bay area were determined by typical profile tests.Combined with water quality investigation and other means,profiles for the high-density resistivity method were arranged,and the interfaces between saline and fresh water were accurately divided.
基金National Key R&D Program of China(2017YFC0601305)Fundamental Research Funds for the Central Universities.
文摘Some unfavorable geological conditions can affect the construction of tunnels.In order to evaluate the damage degree of tunnel construction and determine the surrounding rock grade and stability of the tunnel,the authors used high-density resistivity method to detect the surrounding rocks of Shimodong tunnel in Xicheng Town of Helong City.The underground resistivity structures of the entrance,exit and middle parts of the tunnel are obtained.Through analysis,it is found that there are no bedrock faults near the tunnel,although some joints and fissures are developed in some locations,which are characterized by low-resistivity anomalies.The tunnel structures are stable overall,favorable for safe and efficient construction.The study also proves the good application effect of the high-density resistivity method in tunnel safety detection.
基金projects of Jilin Provincial Institute of Cultural Relics and Archaeology(No.3S318B564423)National Key R&D Program of China(No.2017YFC0601305)Fundamental Research Funds for the Central Universities.
文摘The authors employ the high-density resistivity method during an archaeological investigation of Sumicheng site,an ancient city of the Tang Dynasty,to find evidence of human activities and locate a favorable target for archaeological excavation in the southern part of the outer city.There are two obvious high-resistivity structures,the south wall of the inner city and an ancient building near the south gate along the outer city wall,of which the resistivities are indicative of rammed soil foundations.The south wall of the inner city is continuous but is cut off abruptly to the east,which we suggest it is due to either wall damage or destruction.The resistivity signature of the target area is verified by archaeological excavation,proving the feasibility and effectiveness of implementing the high-density resistivity method for archaeological exploration.
文摘High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.
文摘Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on subsurface characteristics. Initial analyses indicated a high geothermal gradient at a depth of 900 meters. However, further investigations revealed the presence of previously unmapped and stratigraphically unpositioned saline units, which are identified as the primary cause of low resistivity anomalies observed in Vertical Electrical Sounding (VES) data. Hydrogeochemical analysis of water samples collected from the Gözdöken Spring confirmed the presence of high sodium (1071 mg/L) and chloride (585 mg/L) concentrations, supporting the existence of these saline units. Using the Fournier & Rowe (1966) quartz geothermometer, a reservoir temperature of 61.88˚C was estimated, indicating a low- to medium-enthalpy geothermal system. These findings underscore the necessity for more detailed and integrated approaches to accurately assess the geothermal energy potential of the region.
基金supported by The National Natural Science Foundation of China(22276137,52170087)the Fundamental Research Funds for the Central Universities(XJEDU2023Z009).
文摘Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.
文摘BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.
基金the support from National Key Research and Development Program of China(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.
基金Supported by the Special Fund for Clinical Research of Nanjing Drum Tower Hospital(No.2023-LCYJPY-37).
文摘AIM:To evaluate the relationship between monocyte to high-density lipoprotein cholesterol ratio(MHR)and the disease activity of thyroid-associated ophthalmopathy(TAO).METHODS:A total of 87 patients were classified into two groups based on clinical activity score(CAS)scoring criteria:high CAS group(n=62,the CAS score was≥3);low CAS group(n=25,the CAS score was<3).In addition,a group of healthy people(n=114)were included to compared the MHR.Proptosis,MHR,average signal intensity ratio(SIR),average lacrimal gland(LG)-SIR,average extraocular muscles(EOM)area from 87 patients with TAO were calculated in magnetic resonance imaging(MRI),and compared between these two groups.Correlation testing was utilized to evaluate the association of parameters among the clinical variables.RESULTS:Patients in high CAS group had a higher proptosis(P=0.041)and MHR(P=0.048).Compared to the healthy group,the MHR in the TAO group was higher(P=0.001).Correlation testing declared that CAS score was strongly associated with proptosis and average SIR,and MHR was positively associated with CAS score,average SIR,and average LG-SIR.The area under the receiver operating characteristic curve(AUC)of MHR was 0.6755.CONCLUSION:MHR,a novel inflammatory biomarker,has a significant association with CAS score and MRI imaging(average SIR and LG-SIR)and it can be a new promising predictor during the active phase of TAO.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA_(2)5051000)the National Key R&D Program of China(Grant No.2023YFA1608400)+1 种基金the National Natural Science Foundation of China(Grant No.12005008)the Natural Science Foundation of Top Talent of SZTU(Grant No.GDRC202209).
文摘A model for fast electron-driven high-density plasma is proposed to describe the effect of injected fast electrons on the temperature and inner pressure of the plasma in the fast heating process of the double-cone ignition(DCI)scheme.Due to the collision of the two low-density plasmas,the density and volume of the high-density plasma vary.Therefore,the ignition temperature and energy requirement of the high-density plasma vary at different moments,and the required energy for hot electrons to heat the plasma also changes.In practical experiments,the energy input of hot electrons needs to be considered.To reduce the energy input of hot electrons,the optimal moment and the shortest time for injecting hot electrons with minimum energy are analyzed.In this paper,it is proposed to inject hot electrons for a short time to heat the high-density plasma to a relatively high temperature.Then,the alpha particles with the high heating rate and PdV work heat the plasma to the ignition temperature,further reducing the energy required to inject hot electrons.The study of the injection time of fast electrons can reduce the energy requirement of fast electrons for the high-density plasma and increase the probability of successful ignition of the high-density plasma.
基金supported by the National Key Research and Development Program of China(2021YFB2011700).
文摘In three-dimensional(3D)stacking,the thermal stress of through-silicon via(TSV)has a significant influence on chip performance and reliability,and this problem is exacerbated in high-density TSV arrays.In this study,a novel hollow tungsten TSV(W-TSV)is presented and developed.The hollow structure provides space for the release of thermal stress.Simulation results showed that the hollow W-TSV structure can release 60.3%of thermal stress within the top 2 lm from the surface,and thermal stress can be decreased to less than 20 MPa in the radial area of 3 lm.The ultra-high-density(1600 TSV∙mm2)TSV array with a size of 640×512,a pitch of 25 lm,and an aspect ratio of 20.3 was fabricated,and the test results demonstrated that the proposed TSV has excellent electrical and reliability performances.The average resistance of the TSV was 1.21 X.The leakage current was 643 pA and the breakdown voltage was greater than 100 V.The resistance change is less than 2%after 100 temperature cycles from40 to 125℃.Raman spectroscopy showed that the maximum stress on the wafer surface caused by the hollow W-TSV was 31.02 MPa,which means that there was no keep-out zone(KOZ)caused by the TSV array.These results indicate that this structure has great potential for applications in large-array photodetectors and 3D integrated circuits.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)the NSF of China(Grant Nos.U2032214 and 12104487).
文摘The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.
文摘BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51373184 and 51206167)the National Plan for Science&Technology Support,China(Grant No.2014BAC03B05)the National Basic Research Program of China(Grant Nos.2014CB931803 and 2012CB933801)
文摘To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are -- 2 × 10-7 m2.K.W-1. Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials.
文摘Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000103)the National Natural Science Foundation of China(Grant No.41504081)。
文摘With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.
基金funded by the Research and Innovation Program for Graduate Students in Chongqing(CYB240258)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202100705)+3 种基金Chongqing Talent Program“Package System”Project(Grant No.cstc2022ycjh-bgzxm0080)Key Project for Technological Innovation and Application Development of Chongqing(Grant No.CSTB2022TIAD-KPX0198)Chongqing Natural Science Foundation General Program(Grant No.CSTB2022NSCQ-MSX1591)Chongqing Water Conservancy Science and Technology Project(Grant No.CQSLK-2022001,No.CQSLK-2022002).
文摘The deterioration of shear resistance in rock and soil masses has resulted in numerous severe natural disasters,highlighting the significance of long-term monitoring for disaster prevention and mitigation.This study explores the use of a non-destructive method to quickly and accurately evaluate the shear properties of soil-rock mixture.The shear stress,shear strain,and resistivity of the soil-rock mixture were tested simultaneously using a combination of direct shear and resistivity tests.The test results show that the resistivity of the soil-rock mixture gradually decreases with increasing shear strain.The resistivity of all specimens ranged approximately from 60 to 130Ω.m throughout the shear process.At the end of the shear test,the vertical failure resistivity showed an irregular“W”shape with increasing rock content.It exhibited a significant negative linear functional relationship with the shear strength.With reference to the determination of cohesion and internal friction angle on the shear strength envelope,the horizontal angle of the vertical failure resistivity-normal stress curve is defined as the resistivity angle,and the intercept of the curve is the resistivity at the initial moment of shear.It has been observed that the resistivity angle is negatively and linearly correlated with the internal friction angle.At the same time,there is a linear growth relationship between resistivity at the initial moment of shear and cohesion.It has been demonstrated that an increase in rock content contributes to a general escalation in both the average structure factor and average shape factor.Meanwhile,a decrease in the anisotropy coefficient has also been noted.These alterations are indicative of the extent of microstructural transformations occurring during the deformation process of the soil-rock mixture.The research results verify the feasibility of real-time deformation monitoring and characterization of shear strength parameters using resistivity.