期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于列表译码方法在查询访问模型下含错学习问题的分析 被引量:1
1
作者 王明强 庄金成 《电子与信息学报》 EI CSCD 北大核心 2020年第2期322-326,共5页
Regev在2005年提出了含错学习问题(LWE),这个问题与随机线性码的译码问题密切相关,并且在密码学特别是后量子密码学中应用广泛。原始的含错学习问题是在随机访问模型下提出的,有证据证明该问题的困难性。许多研究者注意到的一个事实是... Regev在2005年提出了含错学习问题(LWE),这个问题与随机线性码的译码问题密切相关,并且在密码学特别是后量子密码学中应用广泛。原始的含错学习问题是在随机访问模型下提出的,有证据证明该问题的困难性。许多研究者注意到的一个事实是当攻击者可以选择样本时,该问题是容易的。但是目前据作者所知并没有一个完整的求解算法。该文分析了查询访问模型下的带有错误学习问题,给出了完整的求解算法。分析采用的工具是将该问题联系到隐藏数问题,然后应用傅里叶学习算法进行列表译码。 展开更多
关键词 含错学习问题 查询访问模型 隐藏数问题 傅里叶学习 列表译码
在线阅读 下载PDF
对DSA和ECDSA的一种改进格攻击 被引量:1
2
作者 余发江 贾耀民 《信息网络安全》 CSCD 北大核心 2022年第2期11-20,共10页
利用格攻击DSA和ECDSA的方法,通过构造同余方程组可以将隐藏数字问题转化为格中最近向量问题,当同余方程组至多有一个解小于给定界限时,可通过求解格中最近向量获取签名私钥。给定界限越大,对解向量的大小要求越宽松,攻击的难度也越低... 利用格攻击DSA和ECDSA的方法,通过构造同余方程组可以将隐藏数字问题转化为格中最近向量问题,当同余方程组至多有一个解小于给定界限时,可通过求解格中最近向量获取签名私钥。给定界限越大,对解向量的大小要求越宽松,攻击的难度也越低。文章提出一种新的给定界限,其大小是原有界限的6.92倍,显著降低了格攻击的难度。利用从OpenSSL收集到的DSA和ECDSA的签名数据,设计验证新界限的格攻击实验。实验结果表明,新界限对已知解向量元素的要求由最高比特位6位降低到3位。对于DSA,当格的维度为350时,攻击成功率达80%;对于ECDSA,当格的维度为260时,攻击成功率达97%。通过解向量减去一个基准向量,可将对已知解向量元素的要求降低至1位,从而降低格攻击的难度。 展开更多
关键词 格攻击 隐藏数字问题 最近向量问题 DSA ECDSA
在线阅读 下载PDF
Paillier陷门函数的两个变体的比特安全性分析 被引量:5
3
作者 苏东 王克 吕克伟 《计算机学报》 EI CSCD 北大核心 2010年第6期1050-1059,共10页
文中对Paillier陷门函数两个变体——Rabin-Paillier和RSA-Paillier进行了比特安全分析.对于Rabin-Paillier陷门函数,文中证明了从密文计算其明文的3 2n/2+log2n个最高有效位与对这个函数求逆一样困难,其中n为RSA模数N的二进制长度.该... 文中对Paillier陷门函数两个变体——Rabin-Paillier和RSA-Paillier进行了比特安全分析.对于Rabin-Paillier陷门函数,文中证明了从密文计算其明文的3 2n/2+log2n个最高有效位与对这个函数求逆一样困难,其中n为RSA模数N的二进制长度.该结论的证明基于Boneh等人提出的素数域上的隐藏数问题的一个变体.文中使用Malykhin在2007年得到的指数和的界把该变体扩展到了Paillier模数N2的情况.对于RSA-Paillier陷门函数,该文完善了Morillo等人对于该函数明文最低有效位的困难性证明.通过设计一个随机化的算法使得Morillo等人提出的明文恢复算法在使用不完美的LSB预言机的时候也能工作. 展开更多
关键词 比特安全 Paillier Rabin-Paillier RSA-Paillier 指数和的界 隐藏数问题
在线阅读 下载PDF
椭圆曲线Diffie-Hellman密钥交换协议的比特安全性研究 被引量:14
4
作者 魏伟 陈佳哲 +1 位作者 李丹 张宝峰 《电子与信息学报》 EI CSCD 北大核心 2020年第8期1820-1827,共8页
椭圆曲线Diffie-Hellman密钥交换协议与其他公钥密码体制相比,能够以较小的密钥尺寸来达到相同的安全强度,因此在实际应用中对带宽和存储的要求较低,从而在很多计算资源受限的环境中有更多应用价值。该文从理论和应用角度,评估该类型协... 椭圆曲线Diffie-Hellman密钥交换协议与其他公钥密码体制相比,能够以较小的密钥尺寸来达到相同的安全强度,因此在实际应用中对带宽和存储的要求较低,从而在很多计算资源受限的环境中有更多应用价值。该文从理论和应用角度,评估该类型协议共享密钥建立过程中的部分信息泄漏对安全性的威胁至关重要。基于隐藏数问题和格分析技术,该文讨论了椭圆曲线Diffie-Hellman密钥交换协议的比特安全性,启发式地证明了椭圆曲线Diffie-Hellman共享密钥的x坐标的中间11/12 bit的计算困难性近似于恢复整个密钥。进一步地,给出了信息泄露量与泄漏位置的显式关系式。该文的研究结果放松了对泄露比特位置的限制,更加符合应用场景,显著改进了以往工作中得出的结论。 展开更多
关键词 椭圆曲线Diffie-Hellman 比特安全 信息泄露 隐藏数问题
在线阅读 下载PDF
基于部分信息泄露的Hensel提升计算问题 被引量:1
5
作者 臧统政 吕克伟 《计算机工程》 CAS CSCD 2013年第8期38-43,54,共7页
针对传统隐藏数仅局限于模素数或模特定形式合数的问题,利用Hensel提升和格归约技术,提出一种隐藏数问题由模素数向模一般形式合数提升的方法。将隐藏数问题由模素数向模素数方幂提升,运用中国剩余定理得到模一般形式合数下的隐藏数问... 针对传统隐藏数仅局限于模素数或模特定形式合数的问题,利用Hensel提升和格归约技术,提出一种隐藏数问题由模素数向模一般形式合数提升的方法。将隐藏数问题由模素数向模素数方幂提升,运用中国剩余定理得到模一般形式合数下的隐藏数问题。利用该方法证明Hensel提升的离散对数计算,可归约到模素数情况下的隐藏数问题。 展开更多
关键词 隐藏数问题 Hensel提升 格归约 最大有意比特 离散对数 中国剩余定理
在线阅读 下载PDF
RSA的比特安全性
6
作者 徐承波 《科学技术与工程》 2007年第8期1740-1741,共2页
Boneh和Venkatesan提出了一个多项式算法,用以恢复p个元素的有限域Fp的隐藏数α,在此基础上得到了许多推广及在某些密码系统的应用。文中把这些结果应用到RSA的比特安全性分析上.
关键词 比特安全性 RSA 隐藏数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部