Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 a...Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 and 3500cm^-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-Me V Sn-ions than that observed for 67.7-Me V Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm^-1frequency shift toward lower wavenumber for the D band and ~ 6-cm^-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1×10^14 ions/cm^2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover,the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.展开更多
Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussio...Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.展开更多
Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated ...Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).展开更多
In the present work,the irradiation hardening behavior of a Chinese low-activation ferritic/martensitic steel CLF-1,a candidate for fusion reactor blankets,is studied.Specimens were irradiated with high-energy14N and5...In the present work,the irradiation hardening behavior of a Chinese low-activation ferritic/martensitic steel CLF-1,a candidate for fusion reactor blankets,is studied.Specimens were irradiated with high-energy14N and56Fe ions at the terminal of a cyclotron to three successively increasing damage levels of 0.05,0.1 and 0.2 displacements per atom(dpa)at about-50°C.The energy of the incident ions was dispersed to 11 successively decreasing grades using an energy degrader,thereby generating an atomic displacement damage plateau in the specimens from the surface to a depth of 25μm,which is sufficiently broad for the Vickers hardness test.Eight different loads(i.e.98 mN,196 m N,490 m N,980 m N,1.96 N,4.9 N,9.8 N and 19.6 N)were applied to the specimens to obtain the depth profiles of the Vickers hardness by using a microhardness tester.Hardening was observable at the lowest damage level,and increased with increasing irradiation dose.A power-law correlation of the Vickers hardness with the damage level(HV0=1.49+0.76 dpa0.31)is proposed.Testing with a nano-indentation technique was also performed,and a linear relationship between the Vickers micro-hardness and the nanohardness(HV0=0.83 H0)was observed.A comparison with other RAFM steels(CLAM,JLF-1,F82 H,EUROFER97 etc.)under neutron or charged particle irradiation conditions shows that most of the RAFM steels exhibit similar power-law exponents in the dose dependence of irradiation hardening.The difference in the irradiation hardening may be attributed to differences in microstructure prior to irradiation.展开更多
The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creati...The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creation of the defects which are called latent tracks. Several models were tested for explaining the track formation in semiconductors irradiated with swift heavy ions, one of them is the thermal spike model. This work shows that the experimental data obtained in semiconductors, in our case in InP irradiated with swift heavy ions can be described on the basis of the thermal spike model. The experimental results obtained on InP have allowed the parameters of this model to be understood. The only free parameter is the electron-phonon coupling constant g which is unknown in InP This model allows the evolution of track radii to be found as a function of electronic stopping power (dE/dx)e for different beam energies. For InP a good agreement is observed between calculated track radii and experimental ones on one hand, and on the other hand between calculated and experimental threshold value of electronic stopping power. This allows determining the electron-phonon coupling value for InP to be equal 0.9 × 10%11 Wcm-3K-land the (dE/dx)e threshold for latent track formation in InP equal 27 + 3 keV/nm for ion energies ranging from 0.4-10 MeV/amu.展开更多
This paper reports that the K x-ray spectra of the thin target 4TAg, 4sCd, 49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions. Our experiment revealed the Kα x-ray e...This paper reports that the K x-ray spectra of the thin target 4TAg, 4sCd, 49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions. Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90-110 eV. The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit. The present work extends the model of Burch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u. In addition to our experimental results, many other experimental results are compared with the calculated values by using the model.展开更多
Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study inve...Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.展开更多
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of S...Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.展开更多
Functional microorganisms to high concentration phenol containing Cr^6+ and Pb^2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability...Functional microorganisms to high concentration phenol containing Cr^6+ and Pb^2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr^6+ and Pb^2+ was observed when changing pH fi'om acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr^6+ and Pb^2+ dropped to less than 1 mg/L within 12 h and 6 h, fi'om initial values of 50 mg/L and 30 mg/L, respectively.展开更多
For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide th...For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.展开更多
[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg...[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg2+, Cr6+, Pb2+, Cd2+ was used to study the bioactivity of DNA; simultaneously, gel electrophoresis and hyperchromic effect were employed to detect the mechanism of DNA damage. [Result] The bioactivity of the exposed DNA was decreased and the influence degree was Hg2+Cr6+Pb2+Cd2+; the gel electrophoresis and hyperchromic effect proved that the main reason leading to reduce the bioactivity was DNA cross link, in the order pf Hg2+Cr6+Pb2+Cd2+. [Conclusion] The study indicated that pUC18 DNA could be used to assay the damage of DNA causing by heavy mental ions, which may be a potential, simple and effective tool to evaluate toxicity of heavy metal ions to DNA.展开更多
We report on irradiation induced single event upset(SEU) by high-energy protons and heavy ions. The experiments were performed at the Paul Scherer Institute, and heavy ions at the SEE irradiating Facility on the HI-...We report on irradiation induced single event upset(SEU) by high-energy protons and heavy ions. The experiments were performed at the Paul Scherer Institute, and heavy ions at the SEE irradiating Facility on the HI-13 Tandem Accelerator in China's Institute of Atomic Energy, Beijing and the Heavy Ion Research Facility in Lanzhou in the Institute of Modern Physics, Chinese Academy of Sciences. The results of proton and heavy ions induced(SEU) in 65 nm bulk silicon CMOS SRAMS are discussed and the prediction on several typical orbits are presented.展开更多
Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more ...Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric anal...A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.展开更多
This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs r...This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.展开更多
Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a...Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a control soil were evaluated based on measurements of the Wien effect in dilute suspensions with a clay concentration of 10 g kg^-1 in four nitrate solutions of 2 × 10^-4/z mol L^-1, where z is the cation valence, and a nitric acid solution of 3 × 10^-5 mol L^-1, Field strengths ranging from 15 to 230 kV cm^-1 were applied for measuring the electrical conductivities (ECs) of the suspensions. The mean free binding energies between the various cations and all of the soils determined from exchange equilibrium increased in the order: Na^+ 〈 Cd^2+ 〈 Cu^2+ 〈 Pb^2+. In general, the ECs of the suspensions in the sodium nitrate solution were smaller than those of the suspensions in the heavy metal solutions because of the lower electrophoretic mobility of sodium compared to the divalent cations. In terms of relative electrical conductivity-field strength relationships, relative electrical conductivity (REC) of suspensions containing various cations at field strengths larger than about 50 kV cm^-1 were in the descending order: Na^+ 〉 Cu^2+ 〉 Cd^2+ 〉 Pb^2+ for all tested soils. A characteristic parameter of the REC-field strength curves, AREC200, REC at a field strength of 200 kV cm^-1 minus that at the local minimum of the concave segment of the REC-field strength curves, characterized the strength of adsorption of the cations stripped off by the applied strong electrical field, and for all soils the values of AREC200 were generally in the order: Na^+ 〈 Cu^2+ ≤ Cd^2+ 〈 Pb^2+.展开更多
The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied. The result shows that the chitin adsorbent has high adsorption capacity for many...The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied. The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni2+ in citric acid. The influence of pH was significant:When pH is higher than 4.0, the high adsorption capacity is obtained,otherwise H+ ion inhibits the adsorption of heavy metal ions. The comparison of the chitin adsorbent with some other commercial adsorbents was made, in which that the adsorption behaviorchitin adsorbent is close to that of commercial cation exchange adsorbents, and its cost is much lower than those commercial adsorbents.展开更多
The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) tri...The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.展开更多
An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair...An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair of orthogonal (horizontal and vertical) dipole magnets to paint the slices of the target volume and longitudinally by active energy variation of the synchrotron slice by slice. The unique techniques such as dose shaping via active energy variation and magnetic deflection constitute a promising three-dimensional conformal even intensity-modulated radiotherapy with heavy ions at HIRFL-CSR. In this paper, the verification of active energy variation and the calibration of steerable beam deflection are shown, as the basic functionality components of the active spot-scanning system. Additionally, based on the capability of creating homogeneous irradiation fields with steerable pencil beams, a radiobiological experiment like cell survival measurement has been performed aiming at comparison of the radiobiological effects under active and passive beam deliveries.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,and 11005134)
文摘Highly oriented pyrolytic graphites are irradiated with 40.5-Me V and 67.7-Me V ^112Sn-ions in a wide range of fluences: 1×10^11 ions/cm^2–1×10^14ions/cm^2. Raman spectra in the region between 1200 cm^-1 and 3500cm^-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-Me V Sn-ions than that observed for 67.7-Me V Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm^-1frequency shift toward lower wavenumber for the D band and ~ 6-cm^-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1×10^14 ions/cm^2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover,the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.
文摘Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,11005134,and 11275237)
文摘Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).
基金sponsored by the National Magnetic Confinement Fusion Program(No.2011GB108003)National Natural Science Foundation of China(No.U1532262)。
文摘In the present work,the irradiation hardening behavior of a Chinese low-activation ferritic/martensitic steel CLF-1,a candidate for fusion reactor blankets,is studied.Specimens were irradiated with high-energy14N and56Fe ions at the terminal of a cyclotron to three successively increasing damage levels of 0.05,0.1 and 0.2 displacements per atom(dpa)at about-50°C.The energy of the incident ions was dispersed to 11 successively decreasing grades using an energy degrader,thereby generating an atomic displacement damage plateau in the specimens from the surface to a depth of 25μm,which is sufficiently broad for the Vickers hardness test.Eight different loads(i.e.98 mN,196 m N,490 m N,980 m N,1.96 N,4.9 N,9.8 N and 19.6 N)were applied to the specimens to obtain the depth profiles of the Vickers hardness by using a microhardness tester.Hardening was observable at the lowest damage level,and increased with increasing irradiation dose.A power-law correlation of the Vickers hardness with the damage level(HV0=1.49+0.76 dpa0.31)is proposed.Testing with a nano-indentation technique was also performed,and a linear relationship between the Vickers micro-hardness and the nanohardness(HV0=0.83 H0)was observed.A comparison with other RAFM steels(CLAM,JLF-1,F82 H,EUROFER97 etc.)under neutron or charged particle irradiation conditions shows that most of the RAFM steels exhibit similar power-law exponents in the dose dependence of irradiation hardening.The difference in the irradiation hardening may be attributed to differences in microstructure prior to irradiation.
文摘The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creation of the defects which are called latent tracks. Several models were tested for explaining the track formation in semiconductors irradiated with swift heavy ions, one of them is the thermal spike model. This work shows that the experimental data obtained in semiconductors, in our case in InP irradiated with swift heavy ions can be described on the basis of the thermal spike model. The experimental results obtained on InP have allowed the parameters of this model to be understood. The only free parameter is the electron-phonon coupling constant g which is unknown in InP This model allows the evolution of track radii to be found as a function of electronic stopping power (dE/dx)e for different beam energies. For InP a good agreement is observed between calculated track radii and experimental ones on one hand, and on the other hand between calculated and experimental threshold value of electronic stopping power. This allows determining the electron-phonon coupling value for InP to be equal 0.9 × 10%11 Wcm-3K-land the (dE/dx)e threshold for latent track formation in InP equal 27 + 3 keV/nm for ion energies ranging from 0.4-10 MeV/amu.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774149)
文摘This paper reports that the K x-ray spectra of the thin target 4TAg, 4sCd, 49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions. Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90-110 eV. The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit. The present work extends the model of Burch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u. In addition to our experimental results, many other experimental results are compared with the calculated values by using the model.
基金supported by the National Natural Science Foundation of China(Nos.12035019,62234013,12205350,12075290,12175287)the China National Postdoctoral Program for Innovative Talents(BX20200340)+1 种基金the fund of Innovation Center of Radiation Application(No.KFZC2022020601)the Chinese Academy of Sciences(CAS)“Light of West China"Program hosted by Jian Zeng.
文摘Gallium nitride(GaN)-based devices have significant potential for space applications.However,the mechanisms of radiation damage to the device,particularly from strong ionizing radiation,remains unknown.This study investigates the effects of radiation on p-gate AlGaN/GaN high-electron-mobility transistors(HEMTs).Under a high voltage,the HEMT leakage current increased sharply and was accompanied by a rapid increase in power density that caused"thermal burnout"of the devices.In addition,a burnout signature appeared on the surface of the burned devices,proving that a single-event burnout effect occurred.Additionally,degradation,including an increase in the on-resistance and a decrease in the breakdown voltage,was observed in devices irradiated with high-energy heavy ions and without bias.The latent tracks induced by heavy ions penetrated the heterojunction interface and extended into the GaN layer.Moreover,a new type of N_(2)bubble defect was discovered inside the tracks using Fresnel analysis.The accumulation of N_(2)bubbles in the heterojunction and buffer layers is more likely to cause leakage and failure.This study indicates that electrical stress accelerates the failure rate and that improving heat dissipation is an effective reinforcement method for GaN-based devices.
基金supported by the National Key R&D Program of China (No. 2023YFA1606401 and 2018YFA0404401)the Young Scholar of Regional Development,CAS ([2023] 15)+1 种基金Chinese Academy of Sciences Stable Support for Young Teams in Basic Research (No. YSBR-002)Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (No. XDB34000000)
文摘Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.
文摘Functional microorganisms to high concentration phenol containing Cr^6+ and Pb^2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr^6+ and Pb^2+ was observed when changing pH fi'om acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr^6+ and Pb^2+ dropped to less than 1 mg/L within 12 h and 6 h, fi'om initial values of 50 mg/L and 30 mg/L, respectively.
基金supported by the National Natural Science Foundation of China(Nos.12035019 and 11690041).
文摘For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.
基金Supported by the National Natural Science Foundation of China(31101370)~~
文摘[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg2+, Cr6+, Pb2+, Cd2+ was used to study the bioactivity of DNA; simultaneously, gel electrophoresis and hyperchromic effect were employed to detect the mechanism of DNA damage. [Result] The bioactivity of the exposed DNA was decreased and the influence degree was Hg2+Cr6+Pb2+Cd2+; the gel electrophoresis and hyperchromic effect proved that the main reason leading to reduce the bioactivity was DNA cross link, in the order pf Hg2+Cr6+Pb2+Cd2+. [Conclusion] The study indicated that pUC18 DNA could be used to assay the damage of DNA causing by heavy mental ions, which may be a potential, simple and effective tool to evaluate toxicity of heavy metal ions to DNA.
文摘We report on irradiation induced single event upset(SEU) by high-energy protons and heavy ions. The experiments were performed at the Paul Scherer Institute, and heavy ions at the SEE irradiating Facility on the HI-13 Tandem Accelerator in China's Institute of Atomic Energy, Beijing and the Heavy Ion Research Facility in Lanzhou in the Institute of Modern Physics, Chinese Academy of Sciences. The results of proton and heavy ions induced(SEU) in 65 nm bulk silicon CMOS SRAMS are discussed and the prediction on several typical orbits are presented.
文摘Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
基金Projects(21571191,51674292) supported by the National Natural Science Foundation of ChinaProject(2016JJ1023) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018TP1003) supported by the Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety,China
文摘A novel three-dimension(3D)graphene/MgO composite was synthesized through self-assembly and embedding MgO nanoparticle in reduced graphene in situ.Fourier transform infrared(FT-IR)spectroscopy,thermal gravimetric analysis(TGA),scanning electron microscopy(SEM),transmission electron microscope(TEM),powder X-raydiffraction(XRD)and X-rayphotoelectron spectroscopy(XPS)were employed to characterize the prepared 3D graphene/MgO composite.The adsorption performance of some metal ions on 3D graphene/MgO was investigated.The results showed that the adsorption capacity was greater than 3D graphene and the maximum adsorption capacity at 25℃was found to be 358.96 mg/g,388.4 mg/g and 169.8 mg/g for Pb^2+,Cd^2+and Cu^2+,respectively.The adsorption kinetic conformed to the pseudo-second-order kinetic model and the adsorption isotherm was well described by Langmuir model.The thermodynamic constants revealed that the sorption process was endothermic and spontaneous in nature.Based on the results of the removal of heavy metal ions from metal smelting wastewater,it can be concluded that the prepared 3D graphene/MgO composite is an effective and potential adsorbent.
文摘This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410808)the National Natural Science Foundation of China (No. 40401030)
文摘Interactions of three heavy metal ions, Cu^2+, Cd^2+, and Pb^2+, and, for comparison, Na^+ with electrodialytic clay fractions (less than 2μm in diameter) of four paddy soils as well as a yellow-brown soil as a control soil were evaluated based on measurements of the Wien effect in dilute suspensions with a clay concentration of 10 g kg^-1 in four nitrate solutions of 2 × 10^-4/z mol L^-1, where z is the cation valence, and a nitric acid solution of 3 × 10^-5 mol L^-1, Field strengths ranging from 15 to 230 kV cm^-1 were applied for measuring the electrical conductivities (ECs) of the suspensions. The mean free binding energies between the various cations and all of the soils determined from exchange equilibrium increased in the order: Na^+ 〈 Cd^2+ 〈 Cu^2+ 〈 Pb^2+. In general, the ECs of the suspensions in the sodium nitrate solution were smaller than those of the suspensions in the heavy metal solutions because of the lower electrophoretic mobility of sodium compared to the divalent cations. In terms of relative electrical conductivity-field strength relationships, relative electrical conductivity (REC) of suspensions containing various cations at field strengths larger than about 50 kV cm^-1 were in the descending order: Na^+ 〉 Cu^2+ 〉 Cd^2+ 〉 Pb^2+ for all tested soils. A characteristic parameter of the REC-field strength curves, AREC200, REC at a field strength of 200 kV cm^-1 minus that at the local minimum of the concave segment of the REC-field strength curves, characterized the strength of adsorption of the cations stripped off by the applied strong electrical field, and for all soils the values of AREC200 were generally in the order: Na^+ 〈 Cu^2+ ≤ Cd^2+ 〈 Pb^2+.
基金Supported by National Natural Science Foundation of China(No. 29976004 and 20136020) and Fok Ying-tung Education Foundation(No. 71067).
文摘The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied. The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni2+ in citric acid. The influence of pH was significant:When pH is higher than 4.0, the high adsorption capacity is obtained,otherwise H+ ion inhibits the adsorption of heavy metal ions. The comparison of the chitin adsorbent with some other commercial adsorbents was made, in which that the adsorption behaviorchitin adsorbent is close to that of commercial cation exchange adsorbents, and its cost is much lower than those commercial adsorbents.
基金Project(2012CB722803)supported by the Key Project of National Basic Research and Development Program of ChinaProject(U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.
基金Supported by National Basic Research Program of China(973Program,2010CB834203)the Key Project of National Natural Science Foundation of China(10835011)+2 种基金National Natural Science Foundation of China(10905080,11075191)the Natural Science Foundation of Gansu Province of China(1010RJZA007)Science and Technology Development Project of Lanzhou City(2008-sr-10,2009-2-12)
文摘An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair of orthogonal (horizontal and vertical) dipole magnets to paint the slices of the target volume and longitudinally by active energy variation of the synchrotron slice by slice. The unique techniques such as dose shaping via active energy variation and magnetic deflection constitute a promising three-dimensional conformal even intensity-modulated radiotherapy with heavy ions at HIRFL-CSR. In this paper, the verification of active energy variation and the calibration of steerable beam deflection are shown, as the basic functionality components of the active spot-scanning system. Additionally, based on the capability of creating homogeneous irradiation fields with steerable pencil beams, a radiobiological experiment like cell survival measurement has been performed aiming at comparison of the radiobiological effects under active and passive beam deliveries.