Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A no...Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.展开更多
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ...The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponent...We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.展开更多
A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector meth...A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis.展开更多
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ...In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.展开更多
A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix tra...A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically.展开更多
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri...We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.展开更多
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the...Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.展开更多
Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approxima...Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approximate methods.Classical perturbation methods such as LP method,KBM method,multi-scale method and the averaging method on weakly nonlinear vibration system is effective,while the strongly nonlinear system is difficult to apply.Approximate solutions of primary resonance for forced Duffing equation is investigated by means of homotopy analysis method (HAM).Different from other approximate computational method,the HAM is totally independent of small physical parameters,and thus is suitable for most nonlinear problems.The HAM provides a great freedom to choose base functions of solution series,so that a nonlinear problem may be approximated more effectively.The HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter and the auxiliary function.Therefore,HAM not only may solve the weakly non-linear problems but also may be suitable for the strong non-linear problem.Through the approximate solution of forced Duffing equation with cubic non-linearity,the HAM and fourth order Runge-Kutta method of numerical solution were compared,the results show that the HAM not only can solve the steady state solution,but also can calculate the unsteady state solution,and has the good computational accuracy.展开更多
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der...Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.展开更多
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. He...Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.展开更多
基金work is supported by the Fundamental Research Funds for the Central Universities(No.3102019HTQD014)of Northwestern Polytechnical UniversityFunding of National Key Laboratory of Astronautical Flight DynamicsYoung Talent Support Project of Shaanxi State.
文摘Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.
文摘The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
基金The project supported by National Natural Science Foundation of China under Grant No.19902002
文摘We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.
基金The Major State Research Program (G1999030803) of China and the NNSF (G10271066, 19972023) of China.
文摘A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis.
文摘In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.
文摘A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically.
文摘We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M630167)
文摘Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. N090405009)
文摘Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approximate methods.Classical perturbation methods such as LP method,KBM method,multi-scale method and the averaging method on weakly nonlinear vibration system is effective,while the strongly nonlinear system is difficult to apply.Approximate solutions of primary resonance for forced Duffing equation is investigated by means of homotopy analysis method (HAM).Different from other approximate computational method,the HAM is totally independent of small physical parameters,and thus is suitable for most nonlinear problems.The HAM provides a great freedom to choose base functions of solution series,so that a nonlinear problem may be approximated more effectively.The HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter and the auxiliary function.Therefore,HAM not only may solve the weakly non-linear problems but also may be suitable for the strong non-linear problem.Through the approximate solution of forced Duffing equation with cubic non-linearity,the HAM and fourth order Runge-Kutta method of numerical solution were compared,the results show that the HAM not only can solve the steady state solution,but also can calculate the unsteady state solution,and has the good computational accuracy.
基金supported by the National Natural Science Foundation of China(Nos.11702251,12002316)。
文摘Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.
文摘Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.