Solution-processed metal halide perovskites (MHPs) have received significant interest for cost-effective, high-performance optoelectronic devices. In addition to the great successes in photovoltaics, their excellent l...Solution-processed metal halide perovskites (MHPs) have received significant interest for cost-effective, high-performance optoelectronic devices. In addition to the great successes in photovoltaics, their excellent luminescence and charge transport properties also make them promising for light emitting diodes (LEDs). To achieve high-efficiency perovskite LEDs (PeLEDs), extensive efforts have been carried out to enhance radiative recombination rates by confining the electrons and holes. In addition to enhancing radiative recombination rates, it is equally important to decrease the non-radiative recombination for improving the device performance. Passivation of the defects could be an efficient way for reducing the non-radiative recombination.展开更多
The halide perovskite blue light emitting diodes(PeLEDs)attracted many researchers because of its fascinating optoelectrical properties.This review introduces the recent progress of blue PeLEDs which focuses on emissi...The halide perovskite blue light emitting diodes(PeLEDs)attracted many researchers because of its fascinating optoelectrical properties.This review introduces the recent progress of blue PeLEDs which focuses on emissive layers and interlayers.The emissive layer covers three types of perovskite structures:perovskite nanocrystals(PeNCs),2-dimensional(2D)and quasi-2D perovskites,and bulk(3D)perovskites.We will discuss about the remaining challenges of blue PeLEDs,such as limited performances,device instability issues,which should be solved for blue PeLEDs to realize next generation displays.展开更多
Perovskite nanocrystals(PNCs)have recently become promising optoelectronic materials due to their excellent photophysical properties.However,the highly dynamic binding state between ligands and the surface of PNCs has...Perovskite nanocrystals(PNCs)have recently become promising optoelectronic materials due to their excellent photophysical properties.However,the highly dynamic binding state between ligands and the surface of PNCs has severely restricted their luminescent properties and stabilities.In this work,1,3-bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid(cycle acid,CA)is introduced as both an etchant and a ligand upon post-synthetic surface treatment of PNCs.By removing the imperfect octahedrons[Pb X_(6)]^(4-)and passivating the surface defects synergistically,this treatment improves photoluminescence quantum yields from 76%to 95%and enhances the stability of PNCs against polar solvent,moisture,heat,and illumination.Meanwhile,CA can effectively and instantly recover the luminescence emission for aged PNCs.As a result,the CA-Cs Pb Br_(3)PNCs and CA-Cs Pb IxBr_(3-x)PNCs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes(WLEDs)with a color coordinate of(0.41,0.40).Importantly,the CA-based WLED device exhibits superior stability in operational conditions.展开更多
Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite f...Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite films[1]towards superior展开更多
Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and la...Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and lasers as well. Rapid advances in bulk perovskite materials aroused universal interest for the development of perovskite nanocrystals, inspired by the great progress of classic colloidal semiconductor quantum dots. Perovskite nanocrystals have been synthesized based on solution process and exhibited high luminescence quantum yield, sharp emission peak, and emission color tunability. Significant progresses have been made about the application of perovskite nanocrystals for LED and lasers in recent years. In this paper, we will comprehensively introduce the synthesis strategies, physical and chemical characteristics, as well as their applications in optoelectronic devices.展开更多
文摘Solution-processed metal halide perovskites (MHPs) have received significant interest for cost-effective, high-performance optoelectronic devices. In addition to the great successes in photovoltaics, their excellent luminescence and charge transport properties also make them promising for light emitting diodes (LEDs). To achieve high-efficiency perovskite LEDs (PeLEDs), extensive efforts have been carried out to enhance radiative recombination rates by confining the electrons and holes. In addition to enhancing radiative recombination rates, it is equally important to decrease the non-radiative recombination for improving the device performance. Passivation of the defects could be an efficient way for reducing the non-radiative recombination.
基金"the Research Project Funded by U-K Brand"(1.210037.01,1.200041.01)of UNIST(Ulsan National Institute of Science&Technology)Nano Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(NRF-2021M3H4A1A02049634).
文摘The halide perovskite blue light emitting diodes(PeLEDs)attracted many researchers because of its fascinating optoelectrical properties.This review introduces the recent progress of blue PeLEDs which focuses on emissive layers and interlayers.The emissive layer covers three types of perovskite structures:perovskite nanocrystals(PeNCs),2-dimensional(2D)and quasi-2D perovskites,and bulk(3D)perovskites.We will discuss about the remaining challenges of blue PeLEDs,such as limited performances,device instability issues,which should be solved for blue PeLEDs to realize next generation displays.
基金financial from the National Natural Science Foundation of China(22279039 and 20181194)the Chinese National 1000-Talent-Plan program+2 种基金the Innovation Project of Optics Valley Laboratory(OVL2021BG008)the Frontier of the Application Foundation of Wuhan Science and Technology Plan Project(2020010601012202)the Foundation of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2021011)。
文摘Perovskite nanocrystals(PNCs)have recently become promising optoelectronic materials due to their excellent photophysical properties.However,the highly dynamic binding state between ligands and the surface of PNCs has severely restricted their luminescent properties and stabilities.In this work,1,3-bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid(cycle acid,CA)is introduced as both an etchant and a ligand upon post-synthetic surface treatment of PNCs.By removing the imperfect octahedrons[Pb X_(6)]^(4-)and passivating the surface defects synergistically,this treatment improves photoluminescence quantum yields from 76%to 95%and enhances the stability of PNCs against polar solvent,moisture,heat,and illumination.Meanwhile,CA can effectively and instantly recover the luminescence emission for aged PNCs.As a result,the CA-Cs Pb Br_(3)PNCs and CA-Cs Pb IxBr_(3-x)PNCs are applied as color-converting layers on a blue LED chip for warm white light-emitting diodes(WLEDs)with a color coordinate of(0.41,0.40).Importantly,the CA-based WLED device exhibits superior stability in operational conditions.
文摘Lead halide perovskites attracted a lot of attention in the last several years,with a focus gradually shifting from the record power conversion efficiencies reported for photovoltaic devices based on thin perovskite films[1]towards superior
基金supported by the Start-up Funding from Shanghai Tech University,the Thousand Youth Talents Plan(21571129)Shanghai Key Research Program(16JC1402100)+5 种基金the National Natural Science Foundation of China(21571129,51572128,U1632118)the National Key Research Program(2016YFA0204000)Shanghai International Cooperation Project(16520720700)the National Natural Science Foundation of China-the Research Grants Council(NSFC-RGC)(5151101197)the National Key Basic Research Program of China(2014CB931702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and lasers as well. Rapid advances in bulk perovskite materials aroused universal interest for the development of perovskite nanocrystals, inspired by the great progress of classic colloidal semiconductor quantum dots. Perovskite nanocrystals have been synthesized based on solution process and exhibited high luminescence quantum yield, sharp emission peak, and emission color tunability. Significant progresses have been made about the application of perovskite nanocrystals for LED and lasers in recent years. In this paper, we will comprehensively introduce the synthesis strategies, physical and chemical characteristics, as well as their applications in optoelectronic devices.
基金Project(2022YFB3602804)supported by the National Key Research and Development Program of ChinaProjects(52233011,61974066,U21A2078)supported by the National Natural Science Foundation of China。