The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four...The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.展开更多
Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in ...Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.展开更多
基金supported by the Key Research and Development Project of Guangdong Province(Grant:2020B1111510001)supported by the Project of Sanya Yazhou Bay Science and Technology City(Grant No:SCKJ-JYRC-2022-14)the National Natural Science Foundation of China(Grant No:92262304).
文摘The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.
基金Supported by the Key Research and Development Project of Guangdong Province(No.2020B1111510001)the National Natural Science Foundation of China(No.U2244224)+1 种基金the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2020GD0802)the Guangdong Special Support Team Program(No.2019BT02H594)。
文摘Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.