Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence netwo...This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.展开更多
This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interfer...This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interference can have a significant impact on the appropriate test location that yields the exact substation ground impedance. Applying a specific percentage rule such as the 61.8% rule for uniform soils to obtain the true ground impedance may lead to unacceptable errors for large grounding systems. This poses significant problems when attempting to validate a design based on raw test data that are interpreted using approximate methods to evaluate substation ground impedance, and determine ground potential rise (GPR), touch and step voltages. Advanced measurement methodologies and modern software packages were used to obtain and effectively analyze fall of potential test data, compute fault current distribution, and evaluate touch and step voltages for this large substation. Fault current distribution between the grounding system and other metallic paths were computed to determine the portion of fault current discharged in the grounding system. The performance of the grounding system, including its GPR and touch and step voltages, has been accurately computed and measured, taking into account the impedance of the steel material used of the ground conductors and circulating currents within the substation grounding system.展开更多
Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feed...Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.展开更多
The goal of this work is creation of optimal grounding model at the substation 10/0.4 kV of the urban power distribution network. The electric current can pose a major threat to the man’s life and health. In addition...The goal of this work is creation of optimal grounding model at the substation 10/0.4 kV of the urban power distribution network. The electric current can pose a major threat to the man’s life and health. In addition to pose a threat for health, the rise of the short circuit, as a consequence of insulation faults, poses a threat to retirement of electric systems and fire risks. The reliable grounding system design has significant implications for protection of human being as well as for electrical facility protection. The set objective was performed on the base of analytical and software-based methods. Analytical method gives a qualitative indication at each step in analysis. It also allows evaluating the values effect on the result, but the method is not susceptible of tolerable accuracy, that is why analytical method serves as initial approximation in differentiating. Specified estimation can be performed in such software package as MATLAB or ETAP. Software-based estimation is based on the finite element method (FEM), the main advantage of which is the ability to create different forms of grounding and allows obtaining distribution graphs of the step potential on the earth’s surface and touch potential. The calculation results in comparison of analytical and software-based methods taking into account the grounding optimization. There are conclusions on the most effective ground network.展开更多
The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which...The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which stretches the length of hundreds to thousands of kilometers, and its structure is not only different from power station and substation grounding system, but also different from the transmission line tower, lightning rod and other small grounding devices. There is little research information on the grounding impedance of high-speed railway integrated grounding system. This paper adopted 0.618 compensation method and reverse away method respectively, measured a section of high-speed railway integrated grounding system grounding impedance by JD16 and CA6425. Measurement results are in good agreement using those two type instrument. By using 0.618 compensation method, the measurement result will be gradually converged at 0.3 Ω with the increasing of current electrode distance, which is the real grounding impedance of integrated grounding system. By using reverse away method, the maximum measurement result difference is less than 0.024 Ω with the lead of current electrode distance increasing. The measurement results will be rapidly converged 0.25 Ω. The results showed that the reverse away method is helpful to shorten the length of current electrode wiring. The measurement error will be small when the current electrode wiring is longer.展开更多
This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obta...This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obtained by the application of the Moment Methods. A formulation based on experimental measurements is applied to quantify the soil parameters for each frequency. The unified approach is applied in the calculation of the grounding impedance of horizontal electrodes. Results show that the inclusion of frequency dependence of the soil parameters leads to a reduction of the values of grounding impedance, in comparison with results for soils with parameters independent of frequency.展开更多
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho...This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.展开更多
In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese...In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.展开更多
Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a fault...Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a faulty feeder identification algorithm based on a Bayesian classifier is proposed.Three characteristic parameters of the RGS(the energy ratio,impedance factor,and energy spectrum entropy)are calculated based on the zero-sequence current(ZSC)of each feeder using wavelet packet transformations.Then,the values of three parameters are sent to a pre-trained Bayesian classifier to recognize the exact fault mode.With this result,the faulty feeder can be finally identified.To find the exact fault area on the faulty feeder,a localization method based on the similarity comparison of dominant frequency-band waveforms is proposed in an RGS equipped with feeder terminal units(FTUs).The FTUs can provide the information on the ZSC at their locations.Through wavelet-packet transformation,ZSC dominant frequency-band waveforms can be obtained at all FTU points.Similarities of the waveforms of characteristics at all FTU points are calculated and compared.The neighboring FTU points with the maximum diversity are the faulty sections finally determined.The proposed method exhibits higher accuracy in both faulty feeder identification and fault area localization compared to the previous methods.Finally,the effectiveness of the proposed method is validated by comparing simulation and experimental results.展开更多
This paper deals with a unified and novel approach for analyzing the frequency and time domain performance of grounding systems.The proposed procedure is based on solving the full set of Maxwell's equations in the...This paper deals with a unified and novel approach for analyzing the frequency and time domain performance of grounding systems.The proposed procedure is based on solving the full set of Maxwell's equations in the frequency domain,and enables the exact computation of very near fields at the surface of the grounding grid,as well as far fields,by simple and accurate closed-form expressions for solving Sommerfeld integrals.In addition,the soil ionization is easily considered in the proposed method.The frequency domain responses are converted to the time domain by fast inverse Laplace transform.The results are validated and have shown acceptable accuracy.展开更多
Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa...Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.展开更多
Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network str...Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network structure and parameters. This paper analyzes the size and distribution of zero sequence voltage and current when one-phase grounding fault occurred in the 110 kV resistance grounding system, and puts forward the grounding protection configuration setting principle of this system combining the power supplying characteristics of 110?kV distribution network. In a reforming substation as an example, the grounding protection of 110 kV lines and transformer have been set and calculated.展开更多
Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that ...Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.展开更多
To avoid pollution of generator exhaust port after the ship docked, the use of shore power supply is developing direction of port. And the shore power grounding method and related standards needed to be carried out. A...To avoid pollution of generator exhaust port after the ship docked, the use of shore power supply is developing direction of port. And the shore power grounding method and related standards needed to be carried out. According to developing status of foreign medium voltage ship and characteristics of navy shipboard power supply, this paper presents a shore power supply network structure and its grounding method. The simulation results show the power supply network structure can effectively suppress the single-phase intermittent ground fault on the system to produce the harm.展开更多
Today the entire globe is shrouded in an inefficient three-phase system. There is however an efficient single-wire system. To use the single wire method, three phase systems can be converted to triple one wire systems.
Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, t...Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow,and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1×10~4±0.019×10~4km~2, a deepening of the regional permafrost active layer by 0.06±0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06±0.0016 m compared to the scenario without TP land surface darkening.Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by0.81±0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.展开更多
This paper presents the development of a new technique to monitor the operating conditions of a grounding device of high voltage apparatus and systems without any diggings and forced outages. The model is based on the...This paper presents the development of a new technique to monitor the operating conditions of a grounding device of high voltage apparatus and systems without any diggings and forced outages. The model is based on the evaluation of the magnetic field distribution along the current-carrying horizontal element when it has been deteriorated or broken. A mathematical model which can be used to analyze and evaluate the integrity of the grounding device has been developed. Computer simulation studies were conducted to validate the effectiveness of the proposed model.展开更多
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
文摘This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.
文摘This paper examines various aspects of the design process and subsequent field test measurements of a large and complex substation grounding system. The study and measurements show that soil layering and lead interference can have a significant impact on the appropriate test location that yields the exact substation ground impedance. Applying a specific percentage rule such as the 61.8% rule for uniform soils to obtain the true ground impedance may lead to unacceptable errors for large grounding systems. This poses significant problems when attempting to validate a design based on raw test data that are interpreted using approximate methods to evaluate substation ground impedance, and determine ground potential rise (GPR), touch and step voltages. Advanced measurement methodologies and modern software packages were used to obtain and effectively analyze fall of potential test data, compute fault current distribution, and evaluate touch and step voltages for this large substation. Fault current distribution between the grounding system and other metallic paths were computed to determine the portion of fault current discharged in the grounding system. The performance of the grounding system, including its GPR and touch and step voltages, has been accurately computed and measured, taking into account the impedance of the steel material used of the ground conductors and circulating currents within the substation grounding system.
基金supported by Natural Science Foundation of Shandong Province(ZR2009FM054)
文摘Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.
文摘The goal of this work is creation of optimal grounding model at the substation 10/0.4 kV of the urban power distribution network. The electric current can pose a major threat to the man’s life and health. In addition to pose a threat for health, the rise of the short circuit, as a consequence of insulation faults, poses a threat to retirement of electric systems and fire risks. The reliable grounding system design has significant implications for protection of human being as well as for electrical facility protection. The set objective was performed on the base of analytical and software-based methods. Analytical method gives a qualitative indication at each step in analysis. It also allows evaluating the values effect on the result, but the method is not susceptible of tolerable accuracy, that is why analytical method serves as initial approximation in differentiating. Specified estimation can be performed in such software package as MATLAB or ETAP. Software-based estimation is based on the finite element method (FEM), the main advantage of which is the ability to create different forms of grounding and allows obtaining distribution graphs of the step potential on the earth’s surface and touch potential. The calculation results in comparison of analytical and software-based methods taking into account the grounding optimization. There are conclusions on the most effective ground network.
文摘The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which stretches the length of hundreds to thousands of kilometers, and its structure is not only different from power station and substation grounding system, but also different from the transmission line tower, lightning rod and other small grounding devices. There is little research information on the grounding impedance of high-speed railway integrated grounding system. This paper adopted 0.618 compensation method and reverse away method respectively, measured a section of high-speed railway integrated grounding system grounding impedance by JD16 and CA6425. Measurement results are in good agreement using those two type instrument. By using 0.618 compensation method, the measurement result will be gradually converged at 0.3 Ω with the increasing of current electrode distance, which is the real grounding impedance of integrated grounding system. By using reverse away method, the maximum measurement result difference is less than 0.024 Ω with the lead of current electrode distance increasing. The measurement results will be rapidly converged 0.25 Ω. The results showed that the reverse away method is helpful to shorten the length of current electrode wiring. The measurement error will be small when the current electrode wiring is longer.
基金financial support provided by Energetic Company of Minas Gerais(CE-MIG)
文摘This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obtained by the application of the Moment Methods. A formulation based on experimental measurements is applied to quantify the soil parameters for each frequency. The unified approach is applied in the calculation of the grounding impedance of horizontal electrodes. Results show that the inclusion of frequency dependence of the soil parameters leads to a reduction of the values of grounding impedance, in comparison with results for soils with parameters independent of frequency.
基金supported in part by the Doctoral Initiation Fund of Nanchang Hangkong University(No.EA202403107)Jiangxi Province Early Career Youth Science and Technology Talent Training Project(No.CK202403509).
文摘This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.
基金supported in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.
文摘Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a faulty feeder identification algorithm based on a Bayesian classifier is proposed.Three characteristic parameters of the RGS(the energy ratio,impedance factor,and energy spectrum entropy)are calculated based on the zero-sequence current(ZSC)of each feeder using wavelet packet transformations.Then,the values of three parameters are sent to a pre-trained Bayesian classifier to recognize the exact fault mode.With this result,the faulty feeder can be finally identified.To find the exact fault area on the faulty feeder,a localization method based on the similarity comparison of dominant frequency-band waveforms is proposed in an RGS equipped with feeder terminal units(FTUs).The FTUs can provide the information on the ZSC at their locations.Through wavelet-packet transformation,ZSC dominant frequency-band waveforms can be obtained at all FTU points.Similarities of the waveforms of characteristics at all FTU points are calculated and compared.The neighboring FTU points with the maximum diversity are the faulty sections finally determined.The proposed method exhibits higher accuracy in both faulty feeder identification and fault area localization compared to the previous methods.Finally,the effectiveness of the proposed method is validated by comparing simulation and experimental results.
文摘This paper deals with a unified and novel approach for analyzing the frequency and time domain performance of grounding systems.The proposed procedure is based on solving the full set of Maxwell's equations in the frequency domain,and enables the exact computation of very near fields at the surface of the grounding grid,as well as far fields,by simple and accurate closed-form expressions for solving Sommerfeld integrals.In addition,the soil ionization is easily considered in the proposed method.The frequency domain responses are converted to the time domain by fast inverse Laplace transform.The results are validated and have shown acceptable accuracy.
基金supported by the National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-Suppression Method for Single-Phase Grounding Fault in Distribution Networks(No.51677030).
文摘Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.
文摘Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network structure and parameters. This paper analyzes the size and distribution of zero sequence voltage and current when one-phase grounding fault occurred in the 110 kV resistance grounding system, and puts forward the grounding protection configuration setting principle of this system combining the power supplying characteristics of 110?kV distribution network. In a reforming substation as an example, the grounding protection of 110 kV lines and transformer have been set and calculated.
文摘Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.
文摘To avoid pollution of generator exhaust port after the ship docked, the use of shore power supply is developing direction of port. And the shore power grounding method and related standards needed to be carried out. According to developing status of foreign medium voltage ship and characteristics of navy shipboard power supply, this paper presents a shore power supply network structure and its grounding method. The simulation results show the power supply network structure can effectively suppress the single-phase intermittent ground fault on the system to produce the harm.
文摘Today the entire globe is shrouded in an inefficient three-phase system. There is however an efficient single-wire system. To use the single wire method, three phase systems can be converted to triple one wire systems.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant No.2019QZKK0208)the National Natural Science Foundation of China (Grant Nos.41988101,42425106)。
文摘Tibetan Plateau(TP) is known as the “Third Pole” of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow,and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1×10~4±0.019×10~4km~2, a deepening of the regional permafrost active layer by 0.06±0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06±0.0016 m compared to the scenario without TP land surface darkening.Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by0.81±0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.
文摘This paper presents the development of a new technique to monitor the operating conditions of a grounding device of high voltage apparatus and systems without any diggings and forced outages. The model is based on the evaluation of the magnetic field distribution along the current-carrying horizontal element when it has been deteriorated or broken. A mathematical model which can be used to analyze and evaluate the integrity of the grounding device has been developed. Computer simulation studies were conducted to validate the effectiveness of the proposed model.