Retrieval of oxalate from snow and ice provides information on past environmental changes. In recent years, records of organic acids in middle-and low-latitude glaciers have attracted the attention of researchers glob...Retrieval of oxalate from snow and ice provides information on past environmental changes. In recent years, records of organic acids in middle-and low-latitude glaciers have attracted the attention of researchers globally. In this study, we analyzed oxalates in an ice core from Laohugou Glacier No. 12 on the Qilian Mountains at an elevation of 5,040 m a.s.l. in2006. Average oxalate concentration was 18.5±2.4 ng/g over the prior 46 years. Oxalate values showed a significantly increasing trend since 1985. From 1985 to 1995, oxalate concentrations had large fluctuations, peaking in about 1987 and exhibiting a slightly decreasing trend since 1995. The result shows that the abrupt increase of oxalate concentration in the ice core since the mid-1980 s reflects atmospheric environmental pollution by human and industrial activities.展开更多
The Laohugou Glacier No. 12 is the largest valley glacier in Qilian Mountains, which is located in northem Qinghai-Tibet Plateau. Movement is the basic characteristic of glaciers, and is also an important distinction ...The Laohugou Glacier No. 12 is the largest valley glacier in Qilian Mountains, which is located in northem Qinghai-Tibet Plateau. Movement is the basic characteristic of glaciers, and is also an important distinction from other terrestrial natural ice. Glacier changes not only reflect climate change, but also play an important role in humanity society. In the arid regions of western China, glaciers are becoming an important water source. We use the GPS receiver (South-Lingrui $82) as data platform with the aid of RTK measurement technology to observe the surface velocity of Laohugou Glacier No. 12. Surface velocity data shows that the maximum value appears at an altitude of 4,750-4,850 m during the period of 2008-2009. During this period, the west branch surface velocity reached 32.6 m per year at an altitude near 4,830 m, the east branch surface velocity reached 32.4 m per year at the altitude near 4,770 m. Comparing the surface velocity data during 2008-2009 with observation results in 1959, the glacier velocity slowed down about 11%.展开更多
Himalayan glaciers are shrinking rapidly,especially after 2000.Glacier shrinkage,however,shows a differential pattern in space and time,emphasizing the need to monitor and assess glacier changes at a larger scale.In t...Himalayan glaciers are shrinking rapidly,especially after 2000.Glacier shrinkage,however,shows a differential pattern in space and time,emphasizing the need to monitor and assess glacier changes at a larger scale.In this study,changes of 48 glaciers situated around the twin peaks of the Nun and Kun mountains in the northwestern Himalaya,hereafter referred to as Nun-Kun Group of Glaciers(NKGG),were investigated using Landsat satellite data during 2000-2020.Changes in glacier area,snout position,Equilibrium Line Altitude(ELA),surface thickness and glacier velocity were assessed using remote sensing data supplemented by field observations.The study revealed that the NKGG glaciers have experienced a recession of 4.5%±3.4%and their snouts have retreated at the rate of 6.4±1.6 m·a^(-1).Additionally,there was a 41%increase observed in the debris cover area during the observation period.Using the geodetic approach,an average glacier elevation change of-1.4±0.4 m·a^(-1)was observed between 2000 and 2012.The observed mass loss of the NKGG has resulted in the deceleration of glacier velocity from 27.0±3.7 m·a^(-1)in 2000 to 21.2±2.2 m·a^(-1)in 2020.The ELA has shifted upwards by 83.0±22 m during the period.Glacier morphological and topographic factors showed a strong influence on glacier recession.Furthermore,a higher recession of 12.9%±3.2%was observed in small glaciers,compared to 2.7%±3.1%in larger glaciers.The debris-covered glaciers showed lower shrinkage(2.8%±1.1%)compared to the clean glaciers(9.3%±5%).The glacier depletion recorded in the NKGG during the last two decades,if continued,would severely diminish glacial volume and capacity to store water,thus jeopardizing the sustainability of water resources in the basin.展开更多
Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountai...Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountains.In this study,realtime kinematic(RTK)data,topographic map and World View-2 satellite imagery were used to measure changes in terminus,extent and volume of Laohugou Glacier No.12.Results showed that Laohugou Glacier No.12 was shrinking significantly since 1957.From1960 to 2015,the terminus reduction of Laohugou Glacier No.12 was 402.96 m(3.99%)in total,and glacier length decreased to 9.7 km from 10.1 km.Reduction of glacier area and volume were the most obvious.From 1957 to 2015,glacier area and volume decreased by 1.54 km^2(7.03%)and 0.1816 km^3,respectively.Reduction trend of terminus and area was slowing in 1950-1980s,even stable for a period in the mid-1980s,and then accelerated.Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957-2015,it was a main reason of continuous retreating of Laohugou Glacier No.12.展开更多
This study reconstructed the annual mass balance(MB)of Laohugou Glacier No.12 in the western Qilian Mountains during 1961–2015.The annual MB was calculated based on a temperature-index and an accumulation model with ...This study reconstructed the annual mass balance(MB)of Laohugou Glacier No.12 in the western Qilian Mountains during 1961–2015.The annual MB was calculated based on a temperature-index and an accumulation model with inputs of daily air temperature and precipitation recorded by surrounding meteorological stations.The model was calibrated by in-situ MB measurements conducted on the glacier during 2010–2015.Change in constructed annual MB had three phases.During Phase Ⅰ(1961-1984),glacier-wide MB values were slightly positive with an average MB of 24±276 mm w.e.(water equivalent).During Phase Ⅱ(1984-1995),the MB values became slightly negative with an average MB of?50±276 mm w.e..The most negative MB values were found during Phase Ⅲ(1996–2015),with an average MB of?377±276 mm w.e.Climatic analysis showed that the warming led to accelerated glacier mass loss despite a persistent increase of precipitation during the analysis period.However,an increase of black carbon deposited on the glacier surface since the 1980s could have contributed to intensified glacier melt.From simulations and measurements of MB on the Urumqi Glacier No.1,26%of glacier melt caused by black carbon could be identified.展开更多
Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northe...Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.展开更多
基金supported by Equipment Function Development Technology Innovation Project of Chinese Academy of Science(Y429C51005)the National Natural Science Foundation of China(41301064)+1 种基金Gansu Provincial Natural Science Foundation of China(1506RJZA286)National Found for Fostering Talents of Basic Science(Y311801001)
文摘Retrieval of oxalate from snow and ice provides information on past environmental changes. In recent years, records of organic acids in middle-and low-latitude glaciers have attracted the attention of researchers globally. In this study, we analyzed oxalates in an ice core from Laohugou Glacier No. 12 on the Qilian Mountains at an elevation of 5,040 m a.s.l. in2006. Average oxalate concentration was 18.5±2.4 ng/g over the prior 46 years. Oxalate values showed a significantly increasing trend since 1985. From 1985 to 1995, oxalate concentrations had large fluctuations, peaking in about 1987 and exhibiting a slightly decreasing trend since 1995. The result shows that the abrupt increase of oxalate concentration in the ice core since the mid-1980 s reflects atmospheric environmental pollution by human and industrial activities.
基金supported by the Chinese Key Basic Research Development Project (973) (Grant Number: 2007CB411501)the National Basic Work Program of Chinese Ministry of Science and Technology "Investigation of glacier resources and their variations in China" (Grant number: 2006FY110200)the Self-determination Project of State Key Laboratory of Cryospheric Sciences (Grant number: SKLCS09-04)
文摘The Laohugou Glacier No. 12 is the largest valley glacier in Qilian Mountains, which is located in northem Qinghai-Tibet Plateau. Movement is the basic characteristic of glaciers, and is also an important distinction from other terrestrial natural ice. Glacier changes not only reflect climate change, but also play an important role in humanity society. In the arid regions of western China, glaciers are becoming an important water source. We use the GPS receiver (South-Lingrui $82) as data platform with the aid of RTK measurement technology to observe the surface velocity of Laohugou Glacier No. 12. Surface velocity data shows that the maximum value appears at an altitude of 4,750-4,850 m during the period of 2008-2009. During this period, the west branch surface velocity reached 32.6 m per year at an altitude near 4,830 m, the east branch surface velocity reached 32.4 m per year at the altitude near 4,770 m. Comparing the surface velocity data during 2008-2009 with observation results in 1959, the glacier velocity slowed down about 11%.
基金as part of the Department of Science and Technology (DST), Government of India sponsored research projects titled “Centre of Excellence for Glaciological Research in Western Himalaya”the financial assistance received from the Department under the projects to conduct the research。
文摘Himalayan glaciers are shrinking rapidly,especially after 2000.Glacier shrinkage,however,shows a differential pattern in space and time,emphasizing the need to monitor and assess glacier changes at a larger scale.In this study,changes of 48 glaciers situated around the twin peaks of the Nun and Kun mountains in the northwestern Himalaya,hereafter referred to as Nun-Kun Group of Glaciers(NKGG),were investigated using Landsat satellite data during 2000-2020.Changes in glacier area,snout position,Equilibrium Line Altitude(ELA),surface thickness and glacier velocity were assessed using remote sensing data supplemented by field observations.The study revealed that the NKGG glaciers have experienced a recession of 4.5%±3.4%and their snouts have retreated at the rate of 6.4±1.6 m·a^(-1).Additionally,there was a 41%increase observed in the debris cover area during the observation period.Using the geodetic approach,an average glacier elevation change of-1.4±0.4 m·a^(-1)was observed between 2000 and 2012.The observed mass loss of the NKGG has resulted in the deceleration of glacier velocity from 27.0±3.7 m·a^(-1)in 2000 to 21.2±2.2 m·a^(-1)in 2020.The ELA has shifted upwards by 83.0±22 m during the period.Glacier morphological and topographic factors showed a strong influence on glacier recession.Furthermore,a higher recession of 12.9%±3.2%was observed in small glaciers,compared to 2.7%±3.1%in larger glaciers.The debris-covered glaciers showed lower shrinkage(2.8%±1.1%)compared to the clean glaciers(9.3%±5%).The glacier depletion recorded in the NKGG during the last two decades,if continued,would severely diminish glacial volume and capacity to store water,thus jeopardizing the sustainability of water resources in the basin.
基金supported by the National Foundational Scientific and Technological Work Programs of the Ministry of Science and Technology of China (grant No. 2013FY111400)the Project from the State Key Laboratory of Cryospheric Sciences (grant No. SKLCS-ZZ-2017)the National Key Geographic Conditions Monitoring: The Project of Basic National Geographical Conditions Monitoring in 2015
文摘Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountains.In this study,realtime kinematic(RTK)data,topographic map and World View-2 satellite imagery were used to measure changes in terminus,extent and volume of Laohugou Glacier No.12.Results showed that Laohugou Glacier No.12 was shrinking significantly since 1957.From1960 to 2015,the terminus reduction of Laohugou Glacier No.12 was 402.96 m(3.99%)in total,and glacier length decreased to 9.7 km from 10.1 km.Reduction of glacier area and volume were the most obvious.From 1957 to 2015,glacier area and volume decreased by 1.54 km^2(7.03%)and 0.1816 km^3,respectively.Reduction trend of terminus and area was slowing in 1950-1980s,even stable for a period in the mid-1980s,and then accelerated.Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957-2015,it was a main reason of continuous retreating of Laohugou Glacier No.12.
基金The work were supported by the Chinese Academy of Sciences(No.QYZDJ-SSW-DQC039)the National Natural Science Foundation of China(Nos.41630754,41721091)+2 种基金the Science and Technology planning Project of Gansu Province(No.18JR4RA002)the Project of the State Key Laboratory of Cryospheric Sciences(Nos.SKLCS-OP-2018-06,SKLCS-OP-2019-01)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2017490711).
文摘This study reconstructed the annual mass balance(MB)of Laohugou Glacier No.12 in the western Qilian Mountains during 1961–2015.The annual MB was calculated based on a temperature-index and an accumulation model with inputs of daily air temperature and precipitation recorded by surrounding meteorological stations.The model was calibrated by in-situ MB measurements conducted on the glacier during 2010–2015.Change in constructed annual MB had three phases.During Phase Ⅰ(1961-1984),glacier-wide MB values were slightly positive with an average MB of 24±276 mm w.e.(water equivalent).During Phase Ⅱ(1984-1995),the MB values became slightly negative with an average MB of?50±276 mm w.e..The most negative MB values were found during Phase Ⅲ(1996–2015),with an average MB of?377±276 mm w.e.Climatic analysis showed that the warming led to accelerated glacier mass loss despite a persistent increase of precipitation during the analysis period.However,an increase of black carbon deposited on the glacier surface since the 1980s could have contributed to intensified glacier melt.From simulations and measurements of MB on the Urumqi Glacier No.1,26%of glacier melt caused by black carbon could be identified.
基金supported by the Chinese Academy of Sciences(KJZD-EW-G03-04)the National Natural Science Foundation of China(41721091,41671071)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2017490711)
文摘Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.