The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequenc...The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.展开更多
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi...According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.展开更多
A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amp...A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.展开更多
The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reser...The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.展开更多
Fluid and effective fracture identification in reservoirs is a crucial part of reservoir prediction.The frequency-dependent AVO inversion algorithms have proven to be effective for identifying fluid through its disper...Fluid and effective fracture identification in reservoirs is a crucial part of reservoir prediction.The frequency-dependent AVO inversion algorithms have proven to be effective for identifying fluid through its dispersion property.However,the conventional frequency-dependent AVO inversion algorithms based on Smith&Gidlow and Aki&Richards approximations do not consider the acquisition azimuth of seismic data and neglect the effect of seismic anisotropic dispersion in the actual medium.The aligned fractures in the subsurface medium induce anisotropy.The seismic anisotropy should be considered while accounting for the seismic dispersion properties through fluid-saturated fractured reservoirs.Anisotropy in such reservoirs is frequency-related due to wave-induced fluid-flow(WIFF)between interconnected fractures and pores.It can be used to identify fluid and effective fractures(fluid-saturated)by using azimuthal seismic data via anisotropic dispersion properties.In this paper,based on Rüger’s equation,we derived an analytical expression in the frequency domain for the frequencydependent AVOAz inversion in terms of fracture orientation,dispersion gradient of isotropic background rock,anisotropic dispersion gradient,and the dispersion at a normal incident angle.The frequency-dependent AVOAz equation utilizes azimuthal seismic data and considers the effect of both isotropic and anisotropic dispersion.Reassigned Gabor Transform(RGT)is used to achieve highresolution frequency division data.We then propose the frequency-dependent AVOAz inversion method to identify fluid and characterize effective fractures in fractured porous reservoirs.Through application to high-qualified seismic data of dolomite and carbonate reservoirs,the results show that the method is useful for identifying fluid and effective fractures in fluid-saturated fractured rocks.展开更多
Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide flu...Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide fluid identification.Current frequency-dependent AVO inversion methods are mainly based on elastic theory without the consideration of the viscoelasticity of oil/gas.A fluid discrimination approach is proposed in this study by incorporating the viscoelasticity and relevant FAVO inversion.Based on viscoelastic and rock physics theories,a frequency-dependent viscoelastic solid-liquid decoupling fluid factor is initially constructed,and its sensitivity in fluid discrimination is compared with other conventional fluid factors.Furthermore,a novel reflectivity equation is derived in terms of the viscoelastic solid-liquid decoupling fluid factor.Due to the introduction of viscoelastic theory,the proposed reflectivity is related to frequency,which is more widely applicable than the traditional elastic reflectivity equation directly derived from the elastic reflectivity equation on frequency.Finally,a pragmatic frequency-dependent inversion method is introduced to verify the feasibility of the equation for frequency-dependent viscoelastic solid-liquid decoupling fluid factor prediction.Synthetic and field data examples demonstrate the feasibility and stability of the proposed approach in fluid discrimination.展开更多
A comprehensive study of modeling the frequency-dependent friction in a pipeline during pressure transients following a sudden cut-off of the flow is presented. A new method using genetic algorithms(GAs) for paramet...A comprehensive study of modeling the frequency-dependent friction in a pipeline during pressure transients following a sudden cut-off of the flow is presented. A new method using genetic algorithms(GAs) for parameter identification of the weighting function coefficients of the frequency-dependent friction model is described. The number of weighting terms required in the friction model is obtained. Comparisons between simulation results and experimental data of transient pressure pulsations close to the valve in horizontal upstream and downstream pipelines are carried out respectively.The validity of the parameter identification method for weighting function coefficients and the calculation method for the number of weighting terms in the friction model is confirmed.展开更多
Recently,the great potential of seismic dispersion attributes in oil and gas exploration has attracted extensive attention.The frequency-dependent amplitude versus offset(FAVO)technology,with dispersion gradient as a ...Recently,the great potential of seismic dispersion attributes in oil and gas exploration has attracted extensive attention.The frequency-dependent amplitude versus offset(FAVO)technology,with dispersion gradient as a hydrocarbon indicator,has developed rapidly.Based on the classical AVO theory,the technology works on the assumption that elastic parameters are frequency-dependent,and implements FAVO inversion using spectral decomposition methods,so that it can take dispersive effects into account and effectively overcome the limitations of the classical AVO.However,the factors that affect FAVO are complicated.To this end,we construct a unified equation for FAVO inversion by combining several Zoeppritz approximations.We study and compare two strategies respectively with(strategy 1)and without(strategy 2)velocity as inversion input data.Using theoretical models,we investigate the influence of various factors,such as the Zoeppritz approximation used,P-and S-wave velocity dispersion,inversion input data,the strong reflection caused by non-reservoir interfaces,and the noise level of the seismic data.Our results show that FAVO inversion based on different Zoeppritz approximations gives similar results.In addition,the inversion results of strategy 2 are generally equivalent to that of strategy 1,which means that strategy 2 can be used to obtain dispersion attributes even if the velocity is not available.We also found that the existence of non-reservoir strong reflection interface may cause significant false dispersion.Therefore,logging,geological,and other relevant data should be fully used to prevent this undesirable consequence.Both the P-and S-wave related dispersion obtained from FAVO can be used as good indicators of a hydrocarbon reservoir,but the P-wave dispersion is more reliable.In fact,due to the mutual coupling of P-and S-wave dispersion terms,the P-wave dispersion gradient inverted from PP reflection seismic data has a stronger hydrocarbon detection ability than the S-wave dispersion gradient.Moreover,there is little difference in using post-stack data or pre-stack angle gathers as inversion input when only the P-wave dispersion is desired.The real application examples further demonstrate that dispersion attributes can not only indicate the location of a hydrocarbon reservoir,but also,to a certain extent,reveal the physical properties of reservoirs.展开更多
A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent....A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.展开更多
The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the t...The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation. Compared with the joint estimation schemes of IQI and channel, the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.展开更多
The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic p...The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic properties of oil-and water-bearing shales.The complexity of the organic matter properties associated with kerogen and hydrocarbon further complicates the characterization of shale oil reservoirs using seismic methods.Nevertheless,the inelastic shale properties associated with oil saturation can enable the utilization of velocity dispersion for hydrocarbon identification in shales.In this study,a seismic inversion scheme based on the fluid dispersion attribute was proposed for the estimation of hydrocarbon enrichment.In the proposed approach,the conventional frequency-dependent inversion scheme was extended by incorporating the PP-wave reflection coefficient presented in terms of the effective fluid bulk modulus.A rock physics model for shale oil reservoirs was constructed to describe the relationship between hydrocarbon saturation and shale inelasticity.According to the modeling results,the hydrocarbon sensitivity of the frequency-dependent effective fluid bulk modulus is superior to the traditional compressional wave velocity dispersion of shales.Quantitative analysis of the inversion re-sults based on synthetics also reveals that the proposed approach identifies the oil saturation and related hydrocarbon enrichment better than the above-mentioned conventional approach.Meanwhile,in real data applications,actual drilling results validate the superiority of the proposed fluid dispersion attribute as a useful hydrocarbon indicator in shale oil reservoirs.展开更多
The reflection of elastic wave from thin bed in porous media is important for oil and gas reservoir seismic exploration.The equations for calculating frequency-dependent reflection amplitude versus incident angle(FDAV...The reflection of elastic wave from thin bed in porous media is important for oil and gas reservoir seismic exploration.The equations for calculating frequency-dependent reflection amplitude versus incident angle(FDAVA)from thin bed in porous media are obtained based on porous media theory.Some conclusions are obtained from numerical analysis,specifically,slow compression wave may be ignored when considering boundary conditions in most situations;the dispersion of reflection from thin bed is much higher than that from thick layer and is periodic in frequency domain,which is affected by the thickness of thin bed,velocity,and incident angle;the reflection amplitude envelope in frequency domain decays exponentially,which is affected by the thickness of thin bed,attenuation,and incident angle;the reflection amplitude increases with thickness of thin bed increasing,and then it decreases when the thickness reaches to a quarter of wavelength.展开更多
Electromagnetic transient simulation for large-scale power system is a time-consuming problem.A new frequency-dependent equivalence method is presented in the paper,which might significantly accelerate power system el...Electromagnetic transient simulation for large-scale power system is a time-consuming problem.A new frequency-dependent equivalence method is presented in the paper,which might significantly accelerate power system electromagnetic transient simulation.In the method,an effective algorithm is designed to directly transfer the port admittance determinant of external system's mixing matrix into admittance rational function;and the step-by-step strategy for the equivalence of actual large system is put forward,which further reduces the calculation quantities needed.Moreover,the study of multiple real root pole characteristics of admittance transfer function of two-port network is performed and a proposition is achieved.Based on the proposition and residue theorem,the equivalence system for external system corresponding to the admittance rational function is obtained.The computation complexity of the step-by-step equivalence method is about o(┌n/np×T┐)(┌┐ is upper integral operation,n is the total buses number of external system,N P is the total buses number of single step equivalence network,T is single step equivalence time),which indicates that the computation complexity of the method proposed has nearly linear relationship with the buses number of external system,and the method proposed has satisfactory computation speed.Since the mixing matrix of external system includes all the information of external system,therefore,port admittance rational function derived from it can reflect its full frequency characteristic and the equivalence network achieved has high equivalence precision.Moreover,since the port rational function is gained at the condition of the external system without source,which equals stable passive network,it could not show any unstable pole and need not extra measure to make the equivalence system stable.The test results of the samples and comparison with other methods demonstrate that the new method proposed is valid and effective.展开更多
Predators efficiently learn to avoid one type of warning signal rather than several, making colour polymorphisms un- expected. Aposematic wood tiger moth males Parasemia plantaginis have either white or yellow hindwin...Predators efficiently learn to avoid one type of warning signal rather than several, making colour polymorphisms un- expected. Aposematic wood tiger moth males Parasemia plantaginis have either white or yellow hindwing coloration across Eu- rope. Previous studies indicate that yellow males are better defended from predators, while white males have a positively frequency-dependent mating advantage. However, the potential frequency-dependent behavioural differences in flight between the morphs, as well as the role of male-male interactions in inducing flying activity, have not been previously considered. We ran an outdoor cage experiment where proportions of both male morphs were manipulated to test whether flying activity was frequency- dependent and differed between morphs. The white morph was significantly more active than the yellow one across all treatments, and sustained activity for longer. Overall activity for both morphs was considerably lower in the yellow-biased environment, suggesting that higher proportions of yellow males in a population may lead to overall reduced flying activity. The activity of the yellow morph also followed a steeper, narrower curve than that of the white morph during peak female calling activity. We sug- gest that white males, with their presumably less costly defences, have more resources to invest in flight for predator escape and finding mates. Yellow males, which are better protected but less sexually selected, may instead compensate their lower flight ac- tivity by 'flying smart' during the peak female-calling periods. Thus, both morphs may be able to behaviourally balance the trade-off between warning signal selection and sexual selection. Our results emphasize the greater need to investigate animal behaviour and colour polymorphisms in natural or semi-natural environments [Current Zoology 61 (4): 765-772, 2015].展开更多
Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role ...Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male pheno- types) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male com- petitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on compet- itor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mecha- nisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.展开更多
Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on develop...Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on developing various models for such anomalous viscosity behaviors among which one of the present authors proposed the modified Szabo's wave equation via the positive fractional derivative. The purpose of this study is to apply the modified Szabo's wave equation to simulate a recent ultrasonic imaging technique called the clinical amplitude- velocity reconstruction imaging (CARI) of breast tumors which are of typical soft tissue matters. Investigations have been made on the effects of the size and position of tumors on the quality of ultrasonic medical imaging. It is observed from numerical results that the sound pressure along the reflecting line, which indicates the detection results, varies obviously with sizes and lateral positions of tumors, but remains almost the same for different axial positions.展开更多
Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate ...Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate the exact field distributions of forward and backward surface acoustic waves within a finite-length periodic grating at every frequency. The middle compo- nent of the grating, regarded as a periodic structure, is selected to be investigated which can satisfy the presupposition of the COM model. From these field distributions, the values of P-matrix elements of one cell are calculated. The COM parameters taken as functions of frequency are accurately obtained. Specifically, the frequency-dependent relationships of reflection coefficient and propagation velocity are obtained independently. Using the resultant COM parameters, a one-port resonator on the substrate of 128°YX-LiNbO3 is simulated and the admittance curve shows good agreement with the simulating results using FEM/BEM. These results verify the validity and accuracy of this method.展开更多
Using resting-state functional magnetic resonance imaging(rf MRI),previous studies showed that the APOE e4 allele might affect the functional connectivity between remote brain regions[1,2].However,the local functional...Using resting-state functional magnetic resonance imaging(rf MRI),previous studies showed that the APOE e4 allele might affect the functional connectivity between remote brain regions[1,2].However,the local functional connectivity of APOE e4 carriers has rarely been explored.Regional homogeneity(Re Ho)has been widely used to展开更多
Mating patterns in angiosperms are typically nonrandom,yet the mechanisms driving nonrandom mating remain unclear,especially regarding the effects of quantitative floral traits on plant mating success across male and ...Mating patterns in angiosperms are typically nonrandom,yet the mechanisms driving nonrandom mating remain unclear,especially regarding the effects of quantitative floral traits on plant mating success across male and female functions.In this study,we investigated how variation in spur length and flower number per plant influences mating patterns in Aquilegia rockii within a natural population.Using marker-based paternity analyses and manipulative experiments,we assessed the role of these traits in mating success across both sexual functions.We found significant variation in the mate composition between male and female function,with spur-length frequency positively associated with female outcrossing rate and mate number,but not with male outcrossing or mate number.Most mating events occurred within 10 m,and spur-length frequency positively correlated with mating distance.Regardless of selfing,there was evidence for assortative mating for spur length.Although spur length did not correlate with pollinator visitation,plants with mid-length spurs had higher seed set than those with shorter or longer spurs when autonomous selfing was excluded.Flowers number per plant was only associated with mating distance and female outcrossing rate.Our results suggest that spur length plays a key role in nonrandom mating by frequency-dependent mating,with implications for stabilizing selection and maintenance of genetic diversity.This study advances our understanding of floral diversity by dissecting the role of quantitative floral traits in plant mating through both female and male functions.展开更多
Objective:This study aimed to develop and evaluate a novel software tool for robust analysis of the Visually Enhanced Vestibular-Ocular Reflex(VVOR)and video head impulse test(vHIT)saccades.Methods:A retrospective stu...Objective:This study aimed to develop and evaluate a novel software tool for robust analysis of the Visually Enhanced Vestibular-Ocular Reflex(VVOR)and video head impulse test(vHIT)saccades.Methods:A retrospective study was conducted on 94 patients with Meniere’s Disease(MD),unilateral vestibular hypofunction(UVH),and vestibular migraine(VM).The MATLAB-based VVOR Analysis System and Saccades All in One software were utilized for data processing.New techniques,VVOR_diff and VVOR_cycle,were deployed for saccade parameter extraction.Results:Saccade incidence rates,examined through vHIT,VVOR_diff,and VVOR_cycle,exhibited distinct patterns in MD,UVH,and VM patients.Frequent instances of multiple saccades within a single cycle were noted on the affected side in MD and UVH patients.Statistically significant differences in saccade gain and incidence rates between the affected and unaffected sides were evident in MD and UVH patients.Notably,high inter-method and intra-method correlations suggested consistency across different methods and potential interactions within one.Conclusion:The software proved effective in extracting saccades and reducing noise in VVOR data,thereby enhancing the evaluation of vestibular function and potentially improving diagnostic accuracy for vestibular disorders.展开更多
文摘The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.
基金supported by the National Science and Technology Major Project (No. 2011ZX05019-008)the National Natural Science Foundation of China (No. 41074080)+1 种基金the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-05-11)supported by the CNPC international collaboration program through the Edinburgh Anisotropy Project (EAP) of the British Geological Survey (BGS) and the CNPC Key Geophysical Laboratory at the China University of Petroleum and CNPC geophysical prospecting projects for new method and technique research
文摘According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.
基金supported by the 973 Program of China(No.2013CB429805)the National Natural Science Foundation of China(No.41174080)
文摘A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.
基金supported by the Pilot Project of Sinopec(P14085)
文摘The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.
基金supported by the National Major Science and Technology Project of China(2016ZX05004003)the National Natural Science Foundation of China(41574103,41974120,U20B2015)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(Grant No.SKLCRSM19KFA08)。
文摘Fluid and effective fracture identification in reservoirs is a crucial part of reservoir prediction.The frequency-dependent AVO inversion algorithms have proven to be effective for identifying fluid through its dispersion property.However,the conventional frequency-dependent AVO inversion algorithms based on Smith&Gidlow and Aki&Richards approximations do not consider the acquisition azimuth of seismic data and neglect the effect of seismic anisotropic dispersion in the actual medium.The aligned fractures in the subsurface medium induce anisotropy.The seismic anisotropy should be considered while accounting for the seismic dispersion properties through fluid-saturated fractured reservoirs.Anisotropy in such reservoirs is frequency-related due to wave-induced fluid-flow(WIFF)between interconnected fractures and pores.It can be used to identify fluid and effective fractures(fluid-saturated)by using azimuthal seismic data via anisotropic dispersion properties.In this paper,based on Rüger’s equation,we derived an analytical expression in the frequency domain for the frequencydependent AVOAz inversion in terms of fracture orientation,dispersion gradient of isotropic background rock,anisotropic dispersion gradient,and the dispersion at a normal incident angle.The frequency-dependent AVOAz equation utilizes azimuthal seismic data and considers the effect of both isotropic and anisotropic dispersion.Reassigned Gabor Transform(RGT)is used to achieve highresolution frequency division data.We then propose the frequency-dependent AVOAz inversion method to identify fluid and characterize effective fractures in fractured porous reservoirs.Through application to high-qualified seismic data of dolomite and carbonate reservoirs,the results show that the method is useful for identifying fluid and effective fractures in fluid-saturated fractured rocks.
基金the sponsorship of National Natural Science Foundation of China(41974119,U1762103)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China(2020RA2C620131)。
文摘Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide fluid identification.Current frequency-dependent AVO inversion methods are mainly based on elastic theory without the consideration of the viscoelasticity of oil/gas.A fluid discrimination approach is proposed in this study by incorporating the viscoelasticity and relevant FAVO inversion.Based on viscoelastic and rock physics theories,a frequency-dependent viscoelastic solid-liquid decoupling fluid factor is initially constructed,and its sensitivity in fluid discrimination is compared with other conventional fluid factors.Furthermore,a novel reflectivity equation is derived in terms of the viscoelastic solid-liquid decoupling fluid factor.Due to the introduction of viscoelastic theory,the proposed reflectivity is related to frequency,which is more widely applicable than the traditional elastic reflectivity equation directly derived from the elastic reflectivity equation on frequency.Finally,a pragmatic frequency-dependent inversion method is introduced to verify the feasibility of the equation for frequency-dependent viscoelastic solid-liquid decoupling fluid factor prediction.Synthetic and field data examples demonstrate the feasibility and stability of the proposed approach in fluid discrimination.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.51205045)the Fundamental Research Funds for the Central Universities,China(Grant No.ZYGX2011J083)
文摘A comprehensive study of modeling the frequency-dependent friction in a pipeline during pressure transients following a sudden cut-off of the flow is presented. A new method using genetic algorithms(GAs) for parameter identification of the weighting function coefficients of the frequency-dependent friction model is described. The number of weighting terms required in the friction model is obtained. Comparisons between simulation results and experimental data of transient pressure pulsations close to the valve in horizontal upstream and downstream pipelines are carried out respectively.The validity of the parameter identification method for weighting function coefficients and the calculation method for the number of weighting terms in the friction model is confirmed.
基金This work is supported by the National Natural Science Foundation of China(42304141,41574103 and 41974120)the Joint Funds of the National Natural Science Foundation of China(U20B2015).
文摘Recently,the great potential of seismic dispersion attributes in oil and gas exploration has attracted extensive attention.The frequency-dependent amplitude versus offset(FAVO)technology,with dispersion gradient as a hydrocarbon indicator,has developed rapidly.Based on the classical AVO theory,the technology works on the assumption that elastic parameters are frequency-dependent,and implements FAVO inversion using spectral decomposition methods,so that it can take dispersive effects into account and effectively overcome the limitations of the classical AVO.However,the factors that affect FAVO are complicated.To this end,we construct a unified equation for FAVO inversion by combining several Zoeppritz approximations.We study and compare two strategies respectively with(strategy 1)and without(strategy 2)velocity as inversion input data.Using theoretical models,we investigate the influence of various factors,such as the Zoeppritz approximation used,P-and S-wave velocity dispersion,inversion input data,the strong reflection caused by non-reservoir interfaces,and the noise level of the seismic data.Our results show that FAVO inversion based on different Zoeppritz approximations gives similar results.In addition,the inversion results of strategy 2 are generally equivalent to that of strategy 1,which means that strategy 2 can be used to obtain dispersion attributes even if the velocity is not available.We also found that the existence of non-reservoir strong reflection interface may cause significant false dispersion.Therefore,logging,geological,and other relevant data should be fully used to prevent this undesirable consequence.Both the P-and S-wave related dispersion obtained from FAVO can be used as good indicators of a hydrocarbon reservoir,but the P-wave dispersion is more reliable.In fact,due to the mutual coupling of P-and S-wave dispersion terms,the P-wave dispersion gradient inverted from PP reflection seismic data has a stronger hydrocarbon detection ability than the S-wave dispersion gradient.Moreover,there is little difference in using post-stack data or pre-stack angle gathers as inversion input when only the P-wave dispersion is desired.The real application examples further demonstrate that dispersion attributes can not only indicate the location of a hydrocarbon reservoir,but also,to a certain extent,reveal the physical properties of reservoirs.
基金supported by the Science for Earthquake Resilience of China Earthquake Administration(Grant No.XH14060)the National Natural Science Foundation of China(Grant No.51478135)
文摘A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.
基金supported by the National Natural Science Foundation of China(6140123261471200+4 种基金6150124861501254)the China Postdoctoral Science Foundation(2014M561692)the Jiangsu Province Postdoctoral Science Foundation(1402087C)the NUPTSF(NY213063)
文摘The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation. Compared with the joint estimation schemes of IQI and channel, the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant numbers 42074153 and 42274160)the Open Research Fund of SINOPEC Key Laboratory of Geophysics(Grant number 33550006-20-ZC0699-0006).
文摘The identification of hydrocarbons using seismic methods is critical in the prediction of shale oil res-ervoirs.However,delineating shales of high oil saturation is challenging owing to the similarity in the elastic properties of oil-and water-bearing shales.The complexity of the organic matter properties associated with kerogen and hydrocarbon further complicates the characterization of shale oil reservoirs using seismic methods.Nevertheless,the inelastic shale properties associated with oil saturation can enable the utilization of velocity dispersion for hydrocarbon identification in shales.In this study,a seismic inversion scheme based on the fluid dispersion attribute was proposed for the estimation of hydrocarbon enrichment.In the proposed approach,the conventional frequency-dependent inversion scheme was extended by incorporating the PP-wave reflection coefficient presented in terms of the effective fluid bulk modulus.A rock physics model for shale oil reservoirs was constructed to describe the relationship between hydrocarbon saturation and shale inelasticity.According to the modeling results,the hydrocarbon sensitivity of the frequency-dependent effective fluid bulk modulus is superior to the traditional compressional wave velocity dispersion of shales.Quantitative analysis of the inversion re-sults based on synthetics also reveals that the proposed approach identifies the oil saturation and related hydrocarbon enrichment better than the above-mentioned conventional approach.Meanwhile,in real data applications,actual drilling results validate the superiority of the proposed fluid dispersion attribute as a useful hydrocarbon indicator in shale oil reservoirs.
基金National Natural Science Foundation of China(Grant Nos.41764006,41364004,and 41504095)the Chinese Study Abroad Fund(Grant No.201508360117)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFC0309901)the COMRA Major Project,China(Grant No.DY135-S1-01-01).
文摘The reflection of elastic wave from thin bed in porous media is important for oil and gas reservoir seismic exploration.The equations for calculating frequency-dependent reflection amplitude versus incident angle(FDAVA)from thin bed in porous media are obtained based on porous media theory.Some conclusions are obtained from numerical analysis,specifically,slow compression wave may be ignored when considering boundary conditions in most situations;the dispersion of reflection from thin bed is much higher than that from thick layer and is periodic in frequency domain,which is affected by the thickness of thin bed,velocity,and incident angle;the reflection amplitude envelope in frequency domain decays exponentially,which is affected by the thickness of thin bed,attenuation,and incident angle;the reflection amplitude increases with thickness of thin bed increasing,and then it decreases when the thickness reaches to a quarter of wavelength.
基金supported by the National Natural Science Foundation ofChina (Grant No. 51177107)
文摘Electromagnetic transient simulation for large-scale power system is a time-consuming problem.A new frequency-dependent equivalence method is presented in the paper,which might significantly accelerate power system electromagnetic transient simulation.In the method,an effective algorithm is designed to directly transfer the port admittance determinant of external system's mixing matrix into admittance rational function;and the step-by-step strategy for the equivalence of actual large system is put forward,which further reduces the calculation quantities needed.Moreover,the study of multiple real root pole characteristics of admittance transfer function of two-port network is performed and a proposition is achieved.Based on the proposition and residue theorem,the equivalence system for external system corresponding to the admittance rational function is obtained.The computation complexity of the step-by-step equivalence method is about o(┌n/np×T┐)(┌┐ is upper integral operation,n is the total buses number of external system,N P is the total buses number of single step equivalence network,T is single step equivalence time),which indicates that the computation complexity of the method proposed has nearly linear relationship with the buses number of external system,and the method proposed has satisfactory computation speed.Since the mixing matrix of external system includes all the information of external system,therefore,port admittance rational function derived from it can reflect its full frequency characteristic and the equivalence network achieved has high equivalence precision.Moreover,since the port rational function is gained at the condition of the external system without source,which equals stable passive network,it could not show any unstable pole and need not extra measure to make the equivalence system stable.The test results of the samples and comparison with other methods demonstrate that the new method proposed is valid and effective.
文摘Predators efficiently learn to avoid one type of warning signal rather than several, making colour polymorphisms un- expected. Aposematic wood tiger moth males Parasemia plantaginis have either white or yellow hindwing coloration across Eu- rope. Previous studies indicate that yellow males are better defended from predators, while white males have a positively frequency-dependent mating advantage. However, the potential frequency-dependent behavioural differences in flight between the morphs, as well as the role of male-male interactions in inducing flying activity, have not been previously considered. We ran an outdoor cage experiment where proportions of both male morphs were manipulated to test whether flying activity was frequency- dependent and differed between morphs. The white morph was significantly more active than the yellow one across all treatments, and sustained activity for longer. Overall activity for both morphs was considerably lower in the yellow-biased environment, suggesting that higher proportions of yellow males in a population may lead to overall reduced flying activity. The activity of the yellow morph also followed a steeper, narrower curve than that of the white morph during peak female calling activity. We sug- gest that white males, with their presumably less costly defences, have more resources to invest in flight for predator escape and finding mates. Yellow males, which are better protected but less sexually selected, may instead compensate their lower flight ac- tivity by 'flying smart' during the peak female-calling periods. Thus, both morphs may be able to behaviourally balance the trade-off between warning signal selection and sexual selection. Our results emphasize the greater need to investigate animal behaviour and colour polymorphisms in natural or semi-natural environments [Current Zoology 61 (4): 765-772, 2015].
文摘Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male pheno- types) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male com- petitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on compet- itor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mecha- nisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.
基金supported by National Basic Research Program of China (973 Project No. 2010CB832702)the National Science Funds for Distinguished Young Scholars (11125208)+2 种基金the R&D Special Fund for Public Welfare Industry (Hydrodynamics, Project No. 201101014)Wen Chen is grateful of the Alexander von Humboldt Foundation, Germany, for an Experienced Researcher fellowshipXiaodi Zhang would like to thank China Scholarship Council (CSC) for the financial support
文摘Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on developing various models for such anomalous viscosity behaviors among which one of the present authors proposed the modified Szabo's wave equation via the positive fractional derivative. The purpose of this study is to apply the modified Szabo's wave equation to simulate a recent ultrasonic imaging technique called the clinical amplitude- velocity reconstruction imaging (CARI) of breast tumors which are of typical soft tissue matters. Investigations have been made on the effects of the size and position of tumors on the quality of ultrasonic medical imaging. It is observed from numerical results that the sound pressure along the reflecting line, which indicates the detection results, varies obviously with sizes and lateral positions of tumors, but remains almost the same for different axial positions.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10774073 and 11174143)
文摘Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate the exact field distributions of forward and backward surface acoustic waves within a finite-length periodic grating at every frequency. The middle compo- nent of the grating, regarded as a periodic structure, is selected to be investigated which can satisfy the presupposition of the COM model. From these field distributions, the values of P-matrix elements of one cell are calculated. The COM parameters taken as functions of frequency are accurately obtained. Specifically, the frequency-dependent relationships of reflection coefficient and propagation velocity are obtained independently. Using the resultant COM parameters, a one-port resonator on the substrate of 128°YX-LiNbO3 is simulated and the admittance curve shows good agreement with the simulating results using FEM/BEM. These results verify the validity and accuracy of this method.
基金supported by the National Basic Research Program of China (2015CB351702)the Youth Innovation Promotion Association CAS (2016084)
文摘Using resting-state functional magnetic resonance imaging(rf MRI),previous studies showed that the APOE e4 allele might affect the functional connectivity between remote brain regions[1,2].However,the local functional connectivity of APOE e4 carriers has rarely been explored.Regional homogeneity(Re Ho)has been widely used to
基金financially supported by the National Natural Science Foundation of China(32271693)the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province(202405AC350111)to ZQZ.
文摘Mating patterns in angiosperms are typically nonrandom,yet the mechanisms driving nonrandom mating remain unclear,especially regarding the effects of quantitative floral traits on plant mating success across male and female functions.In this study,we investigated how variation in spur length and flower number per plant influences mating patterns in Aquilegia rockii within a natural population.Using marker-based paternity analyses and manipulative experiments,we assessed the role of these traits in mating success across both sexual functions.We found significant variation in the mate composition between male and female function,with spur-length frequency positively associated with female outcrossing rate and mate number,but not with male outcrossing or mate number.Most mating events occurred within 10 m,and spur-length frequency positively correlated with mating distance.Regardless of selfing,there was evidence for assortative mating for spur length.Although spur length did not correlate with pollinator visitation,plants with mid-length spurs had higher seed set than those with shorter or longer spurs when autonomous selfing was excluded.Flowers number per plant was only associated with mating distance and female outcrossing rate.Our results suggest that spur length plays a key role in nonrandom mating by frequency-dependent mating,with implications for stabilizing selection and maintenance of genetic diversity.This study advances our understanding of floral diversity by dissecting the role of quantitative floral traits in plant mating through both female and male functions.
基金supported by grants from National Science and Technology Ministry Key Research and Development Program–Project(2022YFC2402703).
文摘Objective:This study aimed to develop and evaluate a novel software tool for robust analysis of the Visually Enhanced Vestibular-Ocular Reflex(VVOR)and video head impulse test(vHIT)saccades.Methods:A retrospective study was conducted on 94 patients with Meniere’s Disease(MD),unilateral vestibular hypofunction(UVH),and vestibular migraine(VM).The MATLAB-based VVOR Analysis System and Saccades All in One software were utilized for data processing.New techniques,VVOR_diff and VVOR_cycle,were deployed for saccade parameter extraction.Results:Saccade incidence rates,examined through vHIT,VVOR_diff,and VVOR_cycle,exhibited distinct patterns in MD,UVH,and VM patients.Frequent instances of multiple saccades within a single cycle were noted on the affected side in MD and UVH patients.Statistically significant differences in saccade gain and incidence rates between the affected and unaffected sides were evident in MD and UVH patients.Notably,high inter-method and intra-method correlations suggested consistency across different methods and potential interactions within one.Conclusion:The software proved effective in extracting saccades and reducing noise in VVOR data,thereby enhancing the evaluation of vestibular function and potentially improving diagnostic accuracy for vestibular disorders.