A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-...A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al bifunctional catalyst could be separated from the solution directly and could synthesize H<sub>2</sub>O<sub>2</sub> in situ. The characterization results showed that Fe could improve the dispersion of Pd<sup>0</sup>, and the electronic interactions between Pd and Fe could increase the Pd<sup>0</sup> contents on the catalyst, which increased the productivity of H<sub>2</sub>O<sub>2</sub>. Furthermore, DFT calculations proved that the addition of Fe could inhibit the dissociation of O<sub>2</sub> and promote the nondissociative hydrogenation of O<sub>2</sub> on the surface of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al, which resulted in the increasement of H<sub>2</sub>O<sub>2</sub> selectivity. Finally, the in-situ synthesized H<sub>2</sub>O<sub>2</sub> by Pd was furtherly decomposed in situ by Fe to generate<span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span style="white-space:normal;color:#FFFFFF;font-family:Roboto, " background-color:#d46399;"=""><img src="Edit_e6a13073-7151-40b7-b2c3-a59a59d064fc.png" alt="" /></span></span></span>OH radicals to degrade organic pollutants. Therefore, Fe-Pd/ γ-Al<sub>2</sub>O<sub>3</sub>/Al catalysts exhibited excellent catalytic activity in the in-situ synthesis of H<sub>2</sub>O<sub>2</sub> and the degradation of RhB due to the synergistic effects between Pd and Fe on the catalyst. It provided a new idea for the design of bifunctional electro-Fenton catalysts. Ten cycles of experiments showed that the catalytic activity of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al catalyst could be maintained for a long time.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
文摘A novel Fe-Pd bifunctional catalyst supported on mesh-type γ-Al<sub>2</sub>O<sub>3</sub>/Al was prepared and applied in the degradation of Rhodamine B (RhB). The monolithic mesh-type Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al bifunctional catalyst could be separated from the solution directly and could synthesize H<sub>2</sub>O<sub>2</sub> in situ. The characterization results showed that Fe could improve the dispersion of Pd<sup>0</sup>, and the electronic interactions between Pd and Fe could increase the Pd<sup>0</sup> contents on the catalyst, which increased the productivity of H<sub>2</sub>O<sub>2</sub>. Furthermore, DFT calculations proved that the addition of Fe could inhibit the dissociation of O<sub>2</sub> and promote the nondissociative hydrogenation of O<sub>2</sub> on the surface of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al, which resulted in the increasement of H<sub>2</sub>O<sub>2</sub> selectivity. Finally, the in-situ synthesized H<sub>2</sub>O<sub>2</sub> by Pd was furtherly decomposed in situ by Fe to generate<span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span lang="EN-US" style="white-space:normal;font-size:10pt;font-family:;" "=""><span style="white-space:normal;color:#FFFFFF;font-family:Roboto, " background-color:#d46399;"=""><img src="Edit_e6a13073-7151-40b7-b2c3-a59a59d064fc.png" alt="" /></span></span></span>OH radicals to degrade organic pollutants. Therefore, Fe-Pd/ γ-Al<sub>2</sub>O<sub>3</sub>/Al catalysts exhibited excellent catalytic activity in the in-situ synthesis of H<sub>2</sub>O<sub>2</sub> and the degradation of RhB due to the synergistic effects between Pd and Fe on the catalyst. It provided a new idea for the design of bifunctional electro-Fenton catalysts. Ten cycles of experiments showed that the catalytic activity of Fe-Pd/γ-Al<sub>2</sub>O<sub>3</sub>/Al catalyst could be maintained for a long time.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.