Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d...Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.展开更多
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s...An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Hydroxylation of inert benzene through the activation of the C_(sp2)-H bond is a representative reaction about the transformation of C-H bonds to C-O bonds,which has far-reaching guiding significance but remains a cha...Hydroxylation of inert benzene through the activation of the C_(sp2)-H bond is a representative reaction about the transformation of C-H bonds to C-O bonds,which has far-reaching guiding significance but remains a challenging scientific problem.To overcome this problem,a series of VOx-Ga_(2)O_(3)/SiO_(2)-Al_(2)O_(3)were prepared to achieve an efficient and economical hydroxylation path of benzene to phenol.The results showed that the phenol yield was 72.89%(selectivity>98.1%)under the optimum conditions.The reason is that the C-H bond in the benzene ring is activated by heterolysis over a VOx-Ga_(2)O_(3)/SiO_(2)-Al_(2)O_(3)catalyst.Meanwhile,the introduction of aluminum(Al)and gallium(Ga)made a qualitative change in the catalyst,enhancing the electron motion and spin motion of vanadium species,resulting in the increase of V4^(+)/V5^(+)ratio.In addition,the catalyst can provide an optimal acidic environment and a threedimensional cross-linked surface structure that facilitates product diffusion.展开更多
With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutan...With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.展开更多
Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified ...Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.展开更多
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re...BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.展开更多
Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective stra...Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.展开更多
Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a populat...Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.展开更多
BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importanc...BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance.AIM To investigate the role ofβ-arrestin-2 in GENCs under DN conditions.METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN.GENCs were transfected with plasmids containing siRNA-β-arrestin-2,shRNA-activating transcription factor 6(ATF6),pCDNA-β-arrestin-2,or pCDNA-ATF6.Additionally,adeno-associated virus(AAV)containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice.RESULTS The upregulation ofβ-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice.Knockdown ofβ-arrestin-2 reduced apoptosis in high glucose-treated GENCs,which was reversed by the overexpression of ATF6.Moreover,overexpression ofβ-arrestin-2 Led to the activation of endoplasmic reticulum(ER)stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6.Furthermore,knockdown ofβ-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice.CONCLUSION Knockdown ofβ-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro.Consequently,β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.展开更多
基金supported by the National Natural Science Foundation of China(52276195)Program for Supporting Innovative Research from Jinan(202228072)Program of Agricultural Development from Shandong(SD2019NJ015)。
文摘Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.
基金funded by the Science and Technology Project of Southwest United Graduate School of Yunnan Province(No.202302AQ370002)the National Natural Science Foundation of China(No.22206066)。
文摘An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金the Support Program for Hongliu Young Teachers of Lanzhou University of Technology(02/062214)Young Talent Innovation Project of Lanzhou(2023-QN-103)Major science and technology projects of Gansu Province(22ZD6GA013).
文摘Hydroxylation of inert benzene through the activation of the C_(sp2)-H bond is a representative reaction about the transformation of C-H bonds to C-O bonds,which has far-reaching guiding significance but remains a challenging scientific problem.To overcome this problem,a series of VOx-Ga_(2)O_(3)/SiO_(2)-Al_(2)O_(3)were prepared to achieve an efficient and economical hydroxylation path of benzene to phenol.The results showed that the phenol yield was 72.89%(selectivity>98.1%)under the optimum conditions.The reason is that the C-H bond in the benzene ring is activated by heterolysis over a VOx-Ga_(2)O_(3)/SiO_(2)-Al_(2)O_(3)catalyst.Meanwhile,the introduction of aluminum(Al)and gallium(Ga)made a qualitative change in the catalyst,enhancing the electron motion and spin motion of vanadium species,resulting in the increase of V4^(+)/V5^(+)ratio.In addition,the catalyst can provide an optimal acidic environment and a threedimensional cross-linked surface structure that facilitates product diffusion.
基金supported by the National Key Research and Development Program of China(2019YFC1904100)the National Natural Science Foundation of China(21503144)+3 种基金the Science and Technology Innovation Project for Students of Hebei Province(22E50174D)the Science and Technology Project of Hebei Education Department(QN2021047)the Program of Hebei Vocational University of Industry and Technology(dxs202207,ZY202401)the Key Program of Natural Science of Hebei Province(B2020209017).
文摘With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.
文摘Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.
基金Supported by Natural Science Foundation of Guangxi,No.2020GXNSFDA238006Special Fund of the Central Government Guiding Local Scientific and Technological Development by Guangxi Science and Technology Department,No.GuikeZY21195024Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi,No.2018KY0419.
文摘BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
基金supported by the NSF of China(Nos.21971143,21805165,22209098)the 111 Project(D20015)+1 种基金the major research and development project of Hubei Three Gorges Laboratory(2022-3)the Natural Science Foundation of Hubei Province(2022CFB326)
文摘Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.
基金supported by the National Key R&D Program of China(2021YFC2501500)National Natural Science Foundation of China(82171476)。
文摘Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.
基金Supported by Key Research and Development Program of Shandong Province,No.2021CXGC011101Special Fund for Taishan Scholars Project,No.tsqn202211324+2 种基金National Natural Science Foundation of China,No.81900669Natural Science Foundation of Shandong Province,China,No.ZR2018PH007the Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University.
文摘BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance.AIM To investigate the role ofβ-arrestin-2 in GENCs under DN conditions.METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN.GENCs were transfected with plasmids containing siRNA-β-arrestin-2,shRNA-activating transcription factor 6(ATF6),pCDNA-β-arrestin-2,or pCDNA-ATF6.Additionally,adeno-associated virus(AAV)containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice.RESULTS The upregulation ofβ-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice.Knockdown ofβ-arrestin-2 reduced apoptosis in high glucose-treated GENCs,which was reversed by the overexpression of ATF6.Moreover,overexpression ofβ-arrestin-2 Led to the activation of endoplasmic reticulum(ER)stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6.Furthermore,knockdown ofβ-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice.CONCLUSION Knockdown ofβ-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro.Consequently,β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.