In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an im...In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.展开更多
基金supported by the National Natural Science Foundation of China (No.60764001, 60835001, 60875035)
文摘In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results.