The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,...The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer, a polar Kerr magneto-optical system (PMOKE) and a vibrating sample magnetometer (VSM). The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO. The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process, for ECC media of this kind mainly follow the Stoner Wohlfarth model.展开更多
Nanocomposite Pr2Fe14B/α-Fe permanent magnets were prepared by melt spinning and subsequent crystallizahon of Pr8Fe86B6, amorphous Precursnors. The microstructure is a two-phase nanocomposite of Pr2 Fe14 B and softma...Nanocomposite Pr2Fe14B/α-Fe permanent magnets were prepared by melt spinning and subsequent crystallizahon of Pr8Fe86B6, amorphous Precursnors. The microstructure is a two-phase nanocomposite of Pr2 Fe14 B and softmagnetic α-Fe with an average size of 30nm. X-ray diffration, Thermomagnetic analysis and TEM analy0sis indicatetha amorphous Pr8Fe86B6, alloy crystallizes through the process of Am→Am→Am'+α-Fe→Pr2Fe23B3+α-Fe-Pr2Fe14B+α-FeThe highest value of remanence (Br), cocreivity (Hci) and maximum energy Product ((BH)max) of the nanocrystallinealloys are 1.10T, 340 kA/m and 110 kJ/m3 respechvely, exhibihng remarkable remanence enhancement. The effect ofannaling temperature and time on the microstructure and magnetic properties was also studied. The resultS show thatappropriate annealing temperature and time are important for obtaining the optimal microstructure and the bestmagnetic properties.展开更多
The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ...The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.展开更多
The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), ...The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.展开更多
A series of SmCo/Cr/TbFeCo multilayer thin films with perpendicular anisotropy were prepared by RF- magnetron sputtering system, and the effects of Cr interlayer thickness on magnetic properties and interlayer exchang...A series of SmCo/Cr/TbFeCo multilayer thin films with perpendicular anisotropy were prepared by RF- magnetron sputtering system, and the effects of Cr interlayer thickness on magnetic properties and interlayer exchange coupling were investigated. It was found that the magnetic properties varied with the thickness of Cr interlayer, especially the values of saturation magnetization Ms and the coercivity Hc fluctuated periodically with the thickness of Cr interlayer. STM images revealed that the variation of coercivity Hc was attributed to the microstructure change of SmCo layer influenced by Cr interlayer, and the variation of Ms was related to interlayer exchange coupling.展开更多
The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters...The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.展开更多
The rotational anisotropies in the exchange bias structures of ferromagnetism/antiferromagnetism 1/antiferro- magnetism 2 are studied in this paper. Based on the model, in which the antiferromagnetism is treated with ...The rotational anisotropies in the exchange bias structures of ferromagnetism/antiferromagnetism 1/antiferro- magnetism 2 are studied in this paper. Based on the model, in which the antiferromagnetism is treated with an Ising mean field theory and the rotational anisotropy is assumed to be related to the field created by the moment induced on the antiferromagnetic layer next to the ferromagnetic layer, we can explain why in experiments for ferromag- netism (FM)/antiferromagntism 1 (AFM1)/antiferromagnetism 2 (AFM2) systems the thickness-dependent rotational anisotropy value is non-monotonic, i.e. it reaches a minimum for this system at a specific thickness of the first anti- ferromagnetic layer and exhibits oscillatory behaviour. In addition, we find that the temperature-dependent rotational anisotropy value is in good agreement with the experimental result.展开更多
The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of t...The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.展开更多
Exchange coupling across the interface between a ferromagnetic(FM)layer and an antiferromagnetic(AFM)or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy,which has ...Exchange coupling across the interface between a ferromagnetic(FM)layer and an antiferromagnetic(AFM)or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy,which has been extensively studied due to the important application in magnetic materials and devices.In this work,we observed a fourfold magnetic anisotropy in amorphous Co Fe B layer when exchange coupling to an adjacent Fe Rh layer which is epitaxially grown on an SrTiO_(3)(001)substrate.As the temperature rises from 300 K to 400 K,Fe Rh film undergoes a phase transition from AFM to FM phase,the induced fourfold magnetic anisotropy in the Co Fe B layer switches the orientation from the Fe Rh<110>to Fe Rh<100>directions and the strength is obviously reduced.In addition,the effective magnetic damping as well as the two-magnon scattering of the Co Fe B/Fe Rh bilayer also remarkably increase with the occurrence of magnetic phase transition of Fe Rh.No exchange bias is observed in the bilayer even when Fe Rh is in the nominal AFM state,which is probably because the residual FM Fe Rh moments located at the interface can well separate the exchange coupling between the below pinned Fe Rh moments and the Co Fe B moments.展开更多
In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6...In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium(Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K(Hex= 3.19 kOe,-Jiec= 1.97 erg/cm~2 for tRu=0.6 nm, the unit 1 Oe = 79.5775 A·m-1), which was higher than the previous studies.展开更多
The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese-gallium (MnGa) compounds, are studied. The...The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese-gallium (MnGa) compounds, are studied. The coreshell structure is confirmed by transmission electron microscope (TEM). The ferromagnetic-like core contains three kinds of MnGa binary compounds, i.e., ferrimagnetic (FI) DO22-type MnaGa, ferromagnetic (FM) Mn8Gas, and AFM DO19-type Mn3Ga, of which the first two correspond respectively to a hard magnetic phase and to a soft one. Decoupling effect between these two phases is found at low temperature, which weakens gradually with increasing temperature and disappears above 200 K. The exchange bias (EB) effect is observed simultaneously, which is caused by the exchange coupling between the AFM shell and FM-like core. A large coercivity of 6.96 kOe (1Oe = 79.5775 A·m^-1) and a maximum EB value of 0.45 kOe are achieved at 300 K and 200 K respectively.展开更多
Nitronyl nitroxide radical 1, NIT (4, 4, 5, 5-tetramethyl-4, 5-dihydro-1H-imidazolyl-1- oxyl-3-oxide) and copper(II) chloride complexes with nitronyl nitroxide 2, [Cu(NITPh)2Cl2] (NITPh = 2-phenyl-4, 4, 5, 5-tetrameth...Nitronyl nitroxide radical 1, NIT (4, 4, 5, 5-tetramethyl-4, 5-dihydro-1H-imidazolyl-1- oxyl-3-oxide) and copper(II) chloride complexes with nitronyl nitroxide 2, [Cu(NITPh)2Cl2] (NITPh = 2-phenyl-4, 4, 5, 5-tetramethyl-imidazoline-1-oxyl-3-oxide) were studied with density functional theory (DFT). The magnetic orbital analysis reveals that the antiferromagnetic coupling for complex 2 is due to the antibonding s*-orbital overlap between 22x-yd(Cu) and p* (NO) orbitals. Also, spin population and atomic charge distribution analysis suggest that for AFS of complex 2 the antiferromagnetic coupling between the radical ligands and the copper(II) ion originates from the spin delocalization induced by the a electron transfer from p*(NO) to 22x-yd(Cu) orbital.展开更多
We investigate the modulation of magnetic anisotropy of thulium iron garnet(TmIG)films by interfaced Bi2Se3 thin films.High quality epitaxial growth of Bi2Se3 films has been achieved by molecular beam epitaxy on TmIG ...We investigate the modulation of magnetic anisotropy of thulium iron garnet(TmIG)films by interfaced Bi2Se3 thin films.High quality epitaxial growth of Bi2Se3 films has been achieved by molecular beam epitaxy on TmIG films.By the method of ferromagnetic resonance,we find that the perpendicular magnetic anisotropy(PMA)of TmIG can be greatly strengthened by the adjacent Bi2Se3 layer.Moreover,the competition between topological surface states and thickness dependent bulk states of Bi2Se3 gives rise to the modulation of PMA of the Bi2Se3/TmIG heterostructures.The interfacial interaction can be attributed to the enhanced exchange coupling between Fe^3+ions of TmIG mediated by topological surface electrons of Bi2Se3.展开更多
Nd 12.3 Fe 81.7 x Ga x B 6.0 (x = 0-1.8) ribbons were prepared by melt spinning at 22 m/s and subsequent annealing treatment. The influences of Ga addition and annealing conditions on the magnetic properties and mic...Nd 12.3 Fe 81.7 x Ga x B 6.0 (x = 0-1.8) ribbons were prepared by melt spinning at 22 m/s and subsequent annealing treatment. The influences of Ga addition and annealing conditions on the magnetic properties and microstructure of the nanocrystalline alloys were systematically investigated. After being annealed at 620℃ for 20 min, the J r and H ci increased from 0.85 T and 582.6 kA/m for Ga-free sample to 0.97 T and 734.6 kA/m for the x = 0.9 sample, respectively. The (BH) max for the x = 0.9 sample increased by about 40% from 96.3 to 135.5 kJ/m 3 compared with that of the Ga-free one. The significant improvement of magnetic properties originated from the refinement of grains in the samples by introducing Ga, which led to a stronger exchange coupling between the neighboring grains in comparison with that in Ga-free samples. The microstructure and magnetic properties of the samples depended strongly on annealing parameters, while the sensitivity of micro-structure to annealing conditions could be significantly suppressed by the addition of Ga element.展开更多
The effects of Pr on the structure and magnetic properties of PrxFe60.5-xPt39.5 alloys (x = 0, 0.5, 1.0, and 1.5) were investigated. X-ray diffraction data indicated that the phase transition temperature of FePt bas...The effects of Pr on the structure and magnetic properties of PrxFe60.5-xPt39.5 alloys (x = 0, 0.5, 1.0, and 1.5) were investigated. X-ray diffraction data indicated that the phase transition temperature of FePt based alloys from disordered face-centered-cubic to ordered face-centered-tetragonal cubic decreases with the increase in Pr concentration. Pr plays the role of a grain refiner and it can enhance the exchange coupling between soft magnetic phase and hard magnetic phase. The results indicate that the replacement of Fe by Pr can significantly improve the remanence and coercivity of the Fe60.5Pt39.5 alloy. These results can be explained on the basis of phase transformation and microstructure. Both the remanence ratio and coercivity of the FePt based alloy as a function of the Pr content are increased by the optimum addition of 0.5 at.% Pr.展开更多
A new strategy to chemically synthesize exchange-coupled SmCo_(5)/Sm_(2) Co_(17) nanocomposites by in situ decomposition of SmCox(5<x<8.5)is reported in this work.Our synthesis starts with the fabrication of Co/...A new strategy to chemically synthesize exchange-coupled SmCo_(5)/Sm_(2) Co_(17) nanocomposites by in situ decomposition of SmCox(5<x<8.5)is reported in this work.Our synthesis starts with the fabrication of Co/Sm_(2) O_(3)(Sm to Co atomic ratio of Sn/Co=1:4.2),which can be reduced into 40-nm SmCo_(5) single crystal nanoparticles by Ca under the protection of CaO,showing a high coercivity of 2.85 T and saturation magnetization(Ms)of 0.0671 A·m^(2)·g^(-1).By changing the Sm/Co to 1:4.5,1:4.8 and 1:5.2,SmCo_(5)/Sm_(2) Co_(17) nanocomposites with different proportions were acquired using the same process.Owing to the in situ decomposition of SmCo_(x) intermediate,the small size(both of their size less than 10 nm)and uniform phase distribution were achieved in our nanocomposites.Thus,the as-prepared nanocomposites display a strong exchange-coupling interaction.As a consequence,SMCo_(5)/Sm_(2)Co_(17)(Sm/Co=1:5.2)exhibits a coercivity of 1.23 T and enhanced M7 T(magnetization at 7 T)of 0.0812 A·m^(2)·g^(-1),increasing by 21%than pure SmCo_(5).Our synthesis provides a new protocol to prepare exchange-coupled high-performance nanocomposites.展开更多
A numerical study reports that the zero-field skyrmions in Fe Ge thin films are stabilized when a Fe Ge layer is exchange coupled to a single-domain Ni layer,which has been magnetized perpendicularly.Due to the small ...A numerical study reports that the zero-field skyrmions in Fe Ge thin films are stabilized when a Fe Ge layer is exchange coupled to a single-domain Ni layer,which has been magnetized perpendicularly.Due to the small thickness,an easy-plane anisotropy in the Fe Ge layer is taken into account,and the skyrmion-crystal state is favored to appear for low anisotropies and intermediate Fe Ge/Ni interlayer exchange couplings,and finally transformed from a labyrinth-like and into an out-ofplane uniform state for the large couplings or into an in-plane state for the high anisotropies.Furthermore,the maximum skyrmion charge number is bigger for the periodic and fixed boundary conditions with an out-of-plane magnetization;on the contrary,the Bloch-type skyrmions can be frozen and stabilized for the larger couplings on the fixed boundary with an in-plane magnetization,similar to the experimental results of the magnetic-field-induced skyrmions.Finally,the skyrmion charge number and diameter both decrease if the nonmagnetic defects exist,and the skyrmion centers are prone to being captured by defect sites.This work evidences that the ensembles of homochiral skyrmions stabilized in the multilayers fabricated by well-established technologies present a roadmap to design new classes of the materials that can host skyrmions.展开更多
The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer ins...The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer inserted into the Co/FeMn and FeMn/Co interface respectively were deposited by means of magnetron sputtering. The two interfaces upon and beneath the FeMn layer show distinct behaviors before and after the Pt spacer inserted. There is a remarkable shrink of the interracial uncompensated spins within the FeMn bottom interracial monolayers, whereas a relaxation of the pinning strength of the FeMn interfacial spins along the out-of-plane direction occurs at the top in- terface. XRD analysis indicates the Pt layer upon the FeMn layer forms an fcc (002) texture, implying the magnetic discrepancy between the top and bottom FeMn interfaces has crystalline structural origins.展开更多
A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeab...A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.展开更多
The effect of Nd addition on the structure, phase transformation and magnetic properties of FePt based alloys was investigated. The results indicated that the transition temperature from ordered FCT to disordered FCC ...The effect of Nd addition on the structure, phase transformation and magnetic properties of FePt based alloys was investigated. The results indicated that the transition temperature from ordered FCT to disordered FCC phase decreased with increasing Nd concentration, but for alloys quenched rapidly from the γ phase region into ice-water, it increased with increasing Nd. The Nd element not only effectively reduced the grain size of the ordered phase but also decreased the degree of the ordered phase and refined the grains of the FCC matrix phase. The remanence ratio and coereivity of the FePt based alloy as a function of the Nd content had maximum values, respectively.展开更多
基金Project supported by the Japanese Storage Research Consortium (SRC)the Grant-in-Aid for Scientific Research (A) of the Japanese Ministry of Education, Culture, Sports, Science and Technology (Grant No 14205049)
文摘The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer, a polar Kerr magneto-optical system (PMOKE) and a vibrating sample magnetometer (VSM). The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO. The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process, for ECC media of this kind mainly follow the Stoner Wohlfarth model.
文摘Nanocomposite Pr2Fe14B/α-Fe permanent magnets were prepared by melt spinning and subsequent crystallizahon of Pr8Fe86B6, amorphous Precursnors. The microstructure is a two-phase nanocomposite of Pr2 Fe14 B and softmagnetic α-Fe with an average size of 30nm. X-ray diffration, Thermomagnetic analysis and TEM analy0sis indicatetha amorphous Pr8Fe86B6, alloy crystallizes through the process of Am→Am→Am'+α-Fe→Pr2Fe23B3+α-Fe-Pr2Fe14B+α-FeThe highest value of remanence (Br), cocreivity (Hci) and maximum energy Product ((BH)max) of the nanocrystallinealloys are 1.10T, 340 kA/m and 110 kJ/m3 respechvely, exhibihng remarkable remanence enhancement. The effect ofannaling temperature and time on the microstructure and magnetic properties was also studied. The resultS show thatappropriate annealing temperature and time are important for obtaining the optimal microstructure and the bestmagnetic properties.
基金the Natural Science Foundation of Inner Mongolia of China(Grant No.2019MS01021)the Research Program of Science and Technology at Universi-ties of Inner Mongolia Autonomous Region,China(Grant No.NJZY21454)the Theoretical Physics Discipline De-velopment and Communication Platform of Inner Mongolia University(Grant No.12147216).
文摘The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
基金This work was financially supported by the National Natural Science Foundation of China (No.10074005)
文摘The influence of annealing time on the magnetic properties and microstructure of nanocomposite Pr7.5Dy1Fe71Co15Nb1B4.5 ribbons was systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Interaction domains derived from strong exchange coupling interactions between hard and soft magnetic grains were imaged using magnetic force microscopy (MFM). Maximum remanence, intrinsic coercivity, and maximum energy product values were obtained in the ribbons annealed at 700℃ for 15 min, which were composed of Pr2(Fe, Co)14B, α-(Fe, Co), and slight Pr2(Fe, CO)17 phases. Although Jr, Hci, and (Bn)max decreased gradually with further increase of annealing time, it is emphasized that comparatively high Jr and Hci and (BH)max were obtained in a wide annealing time period of 15 to 360 min. The shape of initial magnetization curves and hysteresis loops change as a function of annealing time, indicating different magnetization reversal routes, which can be fully explained by the corresponding microstructure.
基金the Major Project of National Natural Science Foundation of China (60490290)the National Natural Science Founda-tion of China (60571010)the Natural Science Foundation of Hubei Province (2005ABA041)
文摘A series of SmCo/Cr/TbFeCo multilayer thin films with perpendicular anisotropy were prepared by RF- magnetron sputtering system, and the effects of Cr interlayer thickness on magnetic properties and interlayer exchange coupling were investigated. It was found that the magnetic properties varied with the thickness of Cr interlayer, especially the values of saturation magnetization Ms and the coercivity Hc fluctuated periodically with the thickness of Cr interlayer. STM images revealed that the variation of coercivity Hc was attributed to the microstructure change of SmCo layer influenced by Cr interlayer, and the variation of Ms was related to interlayer exchange coupling.
基金Project supported by the National Natural Sciences Foundation of China (Grant No 10347118)the Natural Science Foundation of Education Commission of Jiangsu Province,China (Grant No 2006KJB140133)
文摘The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.
基金Project supported by the Science Foundation of Educational Commission of Jiangsu Province, China (Grant No 03KJB140153) and the State Key Program of Basic Research of China (Grant Nos 2001CB610602 and 10347118). 0ne of the authors, Hu Jingo-Guo is supported by the China Scholarship Council to work as a visiting scholar at the University of Western Australia.
文摘The rotational anisotropies in the exchange bias structures of ferromagnetism/antiferromagnetism 1/antiferro- magnetism 2 are studied in this paper. Based on the model, in which the antiferromagnetism is treated with an Ising mean field theory and the rotational anisotropy is assumed to be related to the field created by the moment induced on the antiferromagnetic layer next to the ferromagnetic layer, we can explain why in experiments for ferromag- netism (FM)/antiferromagntism 1 (AFM1)/antiferromagnetism 2 (AFM2) systems the thickness-dependent rotational anisotropy value is non-monotonic, i.e. it reaches a minimum for this system at a specific thickness of the first anti- ferromagnetic layer and exhibits oscillatory behaviour. In addition, we find that the temperature-dependent rotational anisotropy value is in good agreement with the experimental result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074179 and 10747007)the National Basic Research Program of Chi(Grant No.2014CB643702)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E010006)the Construction Plan for Scientif Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)the Scientific Research Foundation for the Returned Overse Chinese Scholars of the Education Ministry,Chinathe Program for Key Science and Technology Innovation Team of Zhejiang Province,China(Gra No.2013TD08)
文摘The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874150,51871233,and 12174103)the Natural Science Foundation of Shanghai(Grant Nos.21ZR1420500 and 21JC1402300)。
文摘Exchange coupling across the interface between a ferromagnetic(FM)layer and an antiferromagnetic(AFM)or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy,which has been extensively studied due to the important application in magnetic materials and devices.In this work,we observed a fourfold magnetic anisotropy in amorphous Co Fe B layer when exchange coupling to an adjacent Fe Rh layer which is epitaxially grown on an SrTiO_(3)(001)substrate.As the temperature rises from 300 K to 400 K,Fe Rh film undergoes a phase transition from AFM to FM phase,the induced fourfold magnetic anisotropy in the Co Fe B layer switches the orientation from the Fe Rh<110>to Fe Rh<100>directions and the strength is obviously reduced.In addition,the effective magnetic damping as well as the two-magnon scattering of the Co Fe B/Fe Rh bilayer also remarkably increase with the occurrence of magnetic phase transition of Fe Rh.No exchange bias is observed in the bilayer even when Fe Rh is in the nominal AFM state,which is probably because the residual FM Fe Rh moments located at the interface can well separate the exchange coupling between the below pinned Fe Rh moments and the Co Fe B moments.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704191)the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)
文摘In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field(Hex) and strength(-Jiec) in synthetic antiferromagnetic(SAF) structure of [Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium(Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hexwere studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the-Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hexexhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K(Hex= 3.19 kOe,-Jiec= 1.97 erg/cm~2 for tRu=0.6 nm, the unit 1 Oe = 79.5775 A·m-1), which was higher than the previous studies.
基金Projected supported by the National Basic Research Program of China(Grant No.2010CB934603)the National High Technology Research and Development Program of China(863 Program)(Grant No.2011AA03A402)the National Natural Science Foundation of China(Grant Nos.50931006,51271177,and 51271179)
文摘The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese-gallium (MnGa) compounds, are studied. The coreshell structure is confirmed by transmission electron microscope (TEM). The ferromagnetic-like core contains three kinds of MnGa binary compounds, i.e., ferrimagnetic (FI) DO22-type MnaGa, ferromagnetic (FM) Mn8Gas, and AFM DO19-type Mn3Ga, of which the first two correspond respectively to a hard magnetic phase and to a soft one. Decoupling effect between these two phases is found at low temperature, which weakens gradually with increasing temperature and disappears above 200 K. The exchange bias (EB) effect is observed simultaneously, which is caused by the exchange coupling between the AFM shell and FM-like core. A large coercivity of 6.96 kOe (1Oe = 79.5775 A·m^-1) and a maximum EB value of 0.45 kOe are achieved at 300 K and 200 K respectively.
文摘Nitronyl nitroxide radical 1, NIT (4, 4, 5, 5-tetramethyl-4, 5-dihydro-1H-imidazolyl-1- oxyl-3-oxide) and copper(II) chloride complexes with nitronyl nitroxide 2, [Cu(NITPh)2Cl2] (NITPh = 2-phenyl-4, 4, 5, 5-tetramethyl-imidazoline-1-oxyl-3-oxide) were studied with density functional theory (DFT). The magnetic orbital analysis reveals that the antiferromagnetic coupling for complex 2 is due to the antibonding s*-orbital overlap between 22x-yd(Cu) and p* (NO) orbitals. Also, spin population and atomic charge distribution analysis suggest that for AFS of complex 2 the antiferromagnetic coupling between the radical ligands and the copper(II) ion originates from the spin delocalization induced by the a electron transfer from p*(NO) to 22x-yd(Cu) orbital.
基金Project supported by the National Key Basic Research Project of China(Grant No.2016YFA0300600)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33020300)the National Natural Science Foundation of China(Grant Nos.11604375 and 11874416)。
文摘We investigate the modulation of magnetic anisotropy of thulium iron garnet(TmIG)films by interfaced Bi2Se3 thin films.High quality epitaxial growth of Bi2Se3 films has been achieved by molecular beam epitaxy on TmIG films.By the method of ferromagnetic resonance,we find that the perpendicular magnetic anisotropy(PMA)of TmIG can be greatly strengthened by the adjacent Bi2Se3 layer.Moreover,the competition between topological surface states and thickness dependent bulk states of Bi2Se3 gives rise to the modulation of PMA of the Bi2Se3/TmIG heterostructures.The interfacial interaction can be attributed to the enhanced exchange coupling between Fe^3+ions of TmIG mediated by topological surface electrons of Bi2Se3.
文摘Nd 12.3 Fe 81.7 x Ga x B 6.0 (x = 0-1.8) ribbons were prepared by melt spinning at 22 m/s and subsequent annealing treatment. The influences of Ga addition and annealing conditions on the magnetic properties and microstructure of the nanocrystalline alloys were systematically investigated. After being annealed at 620℃ for 20 min, the J r and H ci increased from 0.85 T and 582.6 kA/m for Ga-free sample to 0.97 T and 734.6 kA/m for the x = 0.9 sample, respectively. The (BH) max for the x = 0.9 sample increased by about 40% from 96.3 to 135.5 kJ/m 3 compared with that of the Ga-free one. The significant improvement of magnetic properties originated from the refinement of grains in the samples by introducing Ga, which led to a stronger exchange coupling between the neighboring grains in comparison with that in Ga-free samples. The microstructure and magnetic properties of the samples depended strongly on annealing parameters, while the sensitivity of micro-structure to annealing conditions could be significantly suppressed by the addition of Ga element.
基金This work is financially supported by the National Natural Science Foundation of China (Nos.50261002 and 10574049).
文摘The effects of Pr on the structure and magnetic properties of PrxFe60.5-xPt39.5 alloys (x = 0, 0.5, 1.0, and 1.5) were investigated. X-ray diffraction data indicated that the phase transition temperature of FePt based alloys from disordered face-centered-cubic to ordered face-centered-tetragonal cubic decreases with the increase in Pr concentration. Pr plays the role of a grain refiner and it can enhance the exchange coupling between soft magnetic phase and hard magnetic phase. The results indicate that the replacement of Fe by Pr can significantly improve the remanence and coercivity of the Fe60.5Pt39.5 alloy. These results can be explained on the basis of phase transformation and microstructure. Both the remanence ratio and coercivity of the FePt based alloy as a function of the Pr content are increased by the optimum addition of 0.5 at.% Pr.
基金This study was financially supported by the National Natural Science Foundation of China(No.51701109)the Natural Science Foundation of Beijing Municipality,China(No.2192007)+1 种基金the China Postdoctoral Science Foundation(No.2018M641132)Leshan Normal University Research Program,China(No.LZD021).
文摘A new strategy to chemically synthesize exchange-coupled SmCo_(5)/Sm_(2) Co_(17) nanocomposites by in situ decomposition of SmCox(5<x<8.5)is reported in this work.Our synthesis starts with the fabrication of Co/Sm_(2) O_(3)(Sm to Co atomic ratio of Sn/Co=1:4.2),which can be reduced into 40-nm SmCo_(5) single crystal nanoparticles by Ca under the protection of CaO,showing a high coercivity of 2.85 T and saturation magnetization(Ms)of 0.0671 A·m^(2)·g^(-1).By changing the Sm/Co to 1:4.5,1:4.8 and 1:5.2,SmCo_(5)/Sm_(2) Co_(17) nanocomposites with different proportions were acquired using the same process.Owing to the in situ decomposition of SmCo_(x) intermediate,the small size(both of their size less than 10 nm)and uniform phase distribution were achieved in our nanocomposites.Thus,the as-prepared nanocomposites display a strong exchange-coupling interaction.As a consequence,SMCo_(5)/Sm_(2)Co_(17)(Sm/Co=1:5.2)exhibits a coercivity of 1.23 T and enhanced M7 T(magnetization at 7 T)of 0.0812 A·m^(2)·g^(-1),increasing by 21%than pure SmCo_(5).Our synthesis provides a new protocol to prepare exchange-coupled high-performance nanocomposites.
基金the National Natural Science Foundation of China(Grant No.11774045)the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant No.20180510008)the Fundamental Research Funds for Central Universities,China(Grant No.N182410008-1)。
文摘A numerical study reports that the zero-field skyrmions in Fe Ge thin films are stabilized when a Fe Ge layer is exchange coupled to a single-domain Ni layer,which has been magnetized perpendicularly.Due to the small thickness,an easy-plane anisotropy in the Fe Ge layer is taken into account,and the skyrmion-crystal state is favored to appear for low anisotropies and intermediate Fe Ge/Ni interlayer exchange couplings,and finally transformed from a labyrinth-like and into an out-ofplane uniform state for the large couplings or into an in-plane state for the high anisotropies.Furthermore,the maximum skyrmion charge number is bigger for the periodic and fixed boundary conditions with an out-of-plane magnetization;on the contrary,the Bloch-type skyrmions can be frozen and stabilized for the larger couplings on the fixed boundary with an in-plane magnetization,similar to the experimental results of the magnetic-field-induced skyrmions.Finally,the skyrmion charge number and diameter both decrease if the nonmagnetic defects exist,and the skyrmion centers are prone to being captured by defect sites.This work evidences that the ensembles of homochiral skyrmions stabilized in the multilayers fabricated by well-established technologies present a roadmap to design new classes of the materials that can host skyrmions.
基金supported by the National Natural Science Foundation of China(Nos.50871014,50831002,50971021,50901007,and 2102014)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(No.PHR201007122)the New Teachers Foundation of the Ministry of Education of China(No.200800081030)
文摘The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer inserted into the Co/FeMn and FeMn/Co interface respectively were deposited by means of magnetron sputtering. The two interfaces upon and beneath the FeMn layer show distinct behaviors before and after the Pt spacer inserted. There is a remarkable shrink of the interracial uncompensated spins within the FeMn bottom interracial monolayers, whereas a relaxation of the pinning strength of the FeMn interfacial spins along the out-of-plane direction occurs at the top in- terface. XRD analysis indicates the Pt layer upon the FeMn layer forms an fcc (002) texture, implying the magnetic discrepancy between the top and bottom FeMn interfaces has crystalline structural origins.
基金supported by Chinese Ministry of Education (No.213022A)the National Natural Science Foundation of China (No.51574112)+4 种基金Henan Key Laboratory of Biogenic Traces and Sedimentary Minerals (No.OTMP1410)the Key Research Project of Higher Education Institution of Henan Province in 2015 (No.15A440001)the Doctor Funds of Henan Polytechnic University (No.B2015-05)the Basic and Advanced Technology Research Projects of Henan Province (No.162300410031)the Science and Technology Innovation Funds for Distinguished Young Scholar in Henan Province (No.164100510013)
文摘A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.
基金Project supported by the National Natural Science Foundation of China (50261002 ,10574049)
文摘The effect of Nd addition on the structure, phase transformation and magnetic properties of FePt based alloys was investigated. The results indicated that the transition temperature from ordered FCT to disordered FCC phase decreased with increasing Nd concentration, but for alloys quenched rapidly from the γ phase region into ice-water, it increased with increasing Nd. The Nd element not only effectively reduced the grain size of the ordered phase but also decreased the degree of the ordered phase and refined the grains of the FCC matrix phase. The remanence ratio and coereivity of the FePt based alloy as a function of the Nd content had maximum values, respectively.