期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Hydrocarbon Generation Potential and Organic Matter Enrichment Mechanism of the Cambrian Marine Shale in the Tadong Low Uplift,Tarim Basin
1
作者 MIAO Huan WANG Yanbin +5 位作者 JIANG Zhenxue ZHAO Shihu SHANG Peng GONG Xun TAO Chuanqi ZHANG Yu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1301-1321,共21页
Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tado... Cambrian shales in China and elsewhere contain abundant oil and gas resources.However,due to its deep burial and limited outcrop,there has been relatively little research conducted on it.The Cambrian shale of the Tadong low uplift in the Tarim Basin of western China,specifically the Xidashan-Xishanbulake Formation(Fm.)and overlying Moheershan Fm.provide a case study through the use of organic petrology,mineralogy,organic and elemental geochemistry,with the aim of analyzing and exploring the hydrocarbon generation potential(PG)and organic matter(OM)enrichment mechanisms within these shale formations.The results indicate that:(1)the Cambrian shale of the Tadong low uplift exhibits relatively dispersed OM that consists of vitrinite-like macerals and solid bitumen.These formations have a higher content of quartz and are primarily composed of silica-based lithology;(2)shale samples from the Xidashan-Xishanbulake and Moheershan formations demonstrate high total organic carbon(TOC)and low pyrolytic hydrocarbon content(S_(2))content.The OM is predominantly typeⅠand typeⅡkerogens,indicating a high level of maturation in the wet gas period.These shales have undergone extensive hydrocarbon generation,showing characteristics of relatively poor PG;(3)the sedimentary environments of the Xidashan-Xishanbulake and Moheershan formations in the Tadong low uplift are similar.They were deposited in warm and humid climatic conditions,in oxygen-deficient environments,with stable terrigenous inputs,high paleoproductivity,high paleosalinity,weak water-holding capacity,and no significant hydrothermal activity;and(4)the relationship between TOC and the paleoproductivity parameter(P/Ti)is most significant in the Lower Cambrian Xidashan-Xishanbulake Fm.,whereas correlation with other indicators is not evident.This suggests a productivity-driven OM enrichment model,where input of landderived material was relatively small during the Middle Cambrian,and the ancient water exhibited lower salinity.A comprehensive pattern was formed under the combined control of paleoproductivity and preservation conditions.This study provides valuable guidance for oil and gas exploration in the Tarim Basin. 展开更多
关键词 Conventional resources hydrocarbon generation potential geochemistry sedimentary environment enrichment mechanism organic matter CAMBRIAN Tadong low uplift
在线阅读 下载PDF
The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts
2
作者 Jingjing Gao Jihua Liu +3 位作者 Hui Zhang Shijuan Yan Xiangwen Ren Quanshu Yan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第8期58-68,共11页
To explore the occurrence phases and enrichment mechanism of rare earth elements(REEs)in cobalt-rich crusts,this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD... To explore the occurrence phases and enrichment mechanism of rare earth elements(REEs)in cobalt-rich crusts,this study analyzes the mineral composition and REE contents of the samples from Marcus-Wake Seamounts by XRD,ICP-OES and ICP-MS.The results show that,(1)the cobalt-rich crusts contain the major crystalline mineral(vernadite),the secondary minerals(quartz,plagioclase and carbonate fluorapatite),and a large amount of amorphous ferric oxyhydroxides(FeOOH).(2)The cobalt-rich crusts contains higher Mn(10.83%to 28.76%)and Fe(6.14%to 18.86%)relative to other elements,and are enriched in REEs,with total REE contents of 1563−3238μg/g and Ce contents of 790−1722μg/g.Rare earth element contents of the old crusts are higher than those of the new crusts.Moreover,the non-phosphatized crusts have positive Ce and negative Y anomalies,and yet the phosphatized crusts have positive Ce and positive Y anomalies,indicating that cobalt-rich crusts is hydrogenetic and REEs mainly come from seawater.(3)Analytical data also show that the occurrence phases of elements in cobalt-rich crusts are closely related to their mineral phases.In the non-phosphatized crusts,REEs are adsorbed by colloidal particles into the crusts(about 67%of REEs in the Fe oxide phase,and about 17%of REEs in the Mn oxide phase).In contrast,in the phosphatized crusts(affected by the phosphatization),REEs may combine with phosphate to form rare earth phosphate minerals,and about 64%of REEs are enriched in the residual phase containing carbonate fluorapatite,but correspondingly the influence of Fe and Mn oxide phases on REEs enrichment is greatly reduced.In addition,the oxidizing environment of seawater,high marine productivity,phosphatization,and slow growth rate can promote the REE enrichment.This study provides a reference for the metallogenesis of cobalt-rich crusts in the Pacific. 展开更多
关键词 cobalt-rich crusts REEs occurrence phase enrichment mechanism Marcus-Wake Seamounts
在线阅读 下载PDF
Enrichment Mechanism and Prospects of Deep Oil and Gas 被引量:6
3
作者 HAO Fang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期742-756,共15页
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay... With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research. 展开更多
关键词 deep oil and gas carbonate reservoir main accumulation period reservoir adjustment and reconstruction enrichment mechanism
在线阅读 下载PDF
Sedimentary facies characteristics and organic matter enrichment mechanism of lower Cambrian Niutitang Formation in South China 被引量:1
4
作者 QIN Ming-yang GUO Jian-hua +2 位作者 TAN Hui WU Shi-qing BIAN Rui-kang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3779-3792,共14页
The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration o... The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration of shale gas.Macro investigation and experimental analyses were used to assess the lithology in detail,total organic matter mass fraction w(TOC),mineral composition,and trace element characteristics of∈1n.The influencing factors of organic matter enrichment were discussed extensively,and a sedimentary facies mode was suggested.In the early stage of∈1n,the locations of Well E’yangye 1,Well Ciye 1,Well Changye 1,and Well Anye 1 respectively develop,platform inner sag,outer shelf,Jiangnan slope belt,and South China detention basin.In the late stage of∈1n,the sedimentary facies evolve with decreasing sea level.The study area presents a complete three-step basin in the Early Cambrian.In the early stage of∈1n,the first step is the Yangtze carbonate platform,the second step is the outer shelf and slope,and the third step is the deep-water basin.From the Yangtze carbonate platform to the deep-water basin,w(TOC)and the mass fraction of quartz gradually increase,the mass fraction of carbonate mineral decreases,and the mass fraction of clay mineral is higher in the second step.The sea level fluctuation results in a higher w(TOC)vertically in the lower∈1n shale,and the paleogeographic(provenance)conditions lead to better horizontal development of organic matter in the outer shelf,slope and detention basin.Trace elements are abundant in the lower∈1n,and w(TOC)is correlated positively with many trace elements.In the outer shelf,slope,and adjacent areas,hydrothermal activity and upwelling current bring nutrient-rich material and promote organic matter enrichment under a strong reducing condition.Deep-shelf,slope and deep-water basin are the best facies for the formation and preservation of organic matter,especially deep-water basin facies.It remains necessary to strengthen the exploration of shale gas in the deep-water basin of∈1n in central Hunan,China. 展开更多
关键词 Niutitang formation(∈1n) organic matter sedimentary facies enrichment mechanism hydrothermal activity upwelling current exploration target
在线阅读 下载PDF
Contrasting sources and enrichment mechanisms in lithium-rich salt lakes:A Li-H-O isotopic and geochemical study from northern Tibetan Plateau 被引量:4
5
作者 Fei Xue Hongbing Tan +6 位作者 Xiying Zhang MSantosh Peixin Cong Lu Ge Chao Li Guohui Chen Yu Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期315-333,共19页
Lithium(Li),a crucial mineral resource for modern high-tech industries,is notably abundant in the northern Tibetan Plateau,primarily within lithium-rich salt lakes.However,the exploration and development of these reso... Lithium(Li),a crucial mineral resource for modern high-tech industries,is notably abundant in the northern Tibetan Plateau,primarily within lithium-rich salt lakes.However,the exploration and development of these resources are hindered due to an incomplete understanding of their nature and origin.Here we present results from a comprehensive study on the hydrochemical parameters,whole-rock geochemistry,H-O isotopes,and Li concentrations in surface brine,river water,geothermal springs,and associated rocks from two representative lithium-enriched salt lakes,the Laguo Co(LGC)and Cangmu Co(CMC)in Tibet to understand the genetic mechanisms.Our water-salt balance calculations and H-O isotopic analysis reveal that Li in LGC and CMC primarily originates from the Suomei Zangbo(SMZB,~91%)and Donglong Zangbo(DLZB,~75%)rivers,respectively.It is estimated that the LGC and CMC took a minimum of 6.0 ka and 3.0 ka to accumulate their current lithium resources,respectively.The distinct geological characteristics reflect evolutionary differences between the two lakes,suggesting diverse lithium sources and enrichment processes.The high lithium ion concentration and light lithium isotope composition in the SMZB river waters indicate the genetic relationship with lithium-enriched geothermal springs in the Tibetan Plateau.Our results suggest that lithium in the LGC originates from lithium-enriched geothermal springs and is primarily supplied through the small-scale SMZB river.In contrast,the formation and evolution of CMC are influenced by the northern Lunggar rifts,receiving a prolonged and stable input from the DLZB,resulting in high lithium concentrations and isotopic values.The absence of lithium-enriched geothermal springs and the prevalence of silicate rocks in the CMC catchment suggest that lithium may be sourced from the weathering of silicate rocks,such as granitic pegmatite veins containing lithium-rich beryl,widely distributed in the upstream area of DLZB.The forward modeling approach,quantifying the contribution fractions of different reservoirs(atmospheric precipitation,silicate,carbonate,and evaporite),indicates that the distinct lithium concentrations in the mainstream(>1 mg/L)and tributaries(<0.1 mg/L)are positively correlated with the ratio of silicate contributions to carbonate contributions,suggesting that dissolved lithium in river waters primarily originates from the weathering and dissolution of silicate rocks.The distinct sources and enrichment mechanisms of lithium in these two salt lakes are attributed to various evolutionary processes,topographical features,hydrological factors,fundamental geological settings,and tectonic histories,despite their spatial proximity.Furthermore,our study highlights the significant role of rivers in the formation of young salt lakes,in addition to geothermal springs. 展开更多
关键词 Lithium isotopes HYDROCHEMISTRY Salt lakes enrichment mechanism Tibetan Plateau
原文传递
Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China
6
作者 Fei XUE Hongbing TAN +1 位作者 Xiying ZHANG Jinbao SU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第11期3476-3499,共24页
Rare metals such as lithium(Li), rubidium(Rb), and cesium(Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is e... Rare metals such as lithium(Li), rubidium(Rb), and cesium(Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements(RMEs) and have the potential to become a new source of rare metals to secure China's strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids(TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li(averaging5.48 mg/L), Rb(averaging 0.75 mg/L), and Cs(averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs,incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transported to the lake basin by surface runoff and continue to concentrate and evolve into salt lake brines under an extremely arid climate environment, constituting an endogenous source and exogenous accumulation salt lake metallogenic model. This comprehensive explanation of the sources, migration, enrichment mechanisms, and resource effects of geothermal springs will deepen the understanding of rare metal mineralization processes, and aid in the advancement of theoretical models for key rare metal mineral resources in various geological bodies of the Tibetan Plateau, significantly expanding exploration scopes and accurately assessing the resource potential of RMEs. 展开更多
关键词 Geothermal springs Rare metal elements enrichment mechanisms Salt lakes Tibetan Plateau
原文传递
Paleoenvironment evolution and organic matter enrichment mechanisms in the first member of the Qingshankou Formation,Songliao Basin,China
7
作者 Ying LI Min WANG +8 位作者 Yu YAN Xin WANG Jinyou ZHANG Xuefeng BAI Yuchen ZHANG Jiaheng XUE Junsheng FEI Lianbin ZHANG Guojun WANG 《Frontiers of Earth Science》 SCIE CSCD 2024年第2期364-383,共20页
Organic matter is the basis for oil and gas generation,and the depositional environment controls its enrichment.The first member of the Qingshankou Formation(K_(2)qn^(1))in Songliao Basin has a thick organic-rich shal... Organic matter is the basis for oil and gas generation,and the depositional environment controls its enrichment.The first member of the Qingshankou Formation(K_(2)qn^(1))in Songliao Basin has a thick organic-rich shale and so is an important target section for shale oil exploration and development.In the Gulong Sag,shale samples from this unit were collected over the full length of the section.The characterization of the environments of deposition(EOD)of K_(2)qn^(1)was improved by utilizing lithological characteristics,thin section observations,elemental compositions,and organic carbon concentrations.Combined with the normalization coefficients proposed in this paper,an organic matter correlation model was established to elucidate the factors that influence organic matter enrichment.From the bottom to the top of K2qn1,the lake depth gradually becomes shallower,the primary productivity first decreases and then increases,the reducing conditions become stronger and then weaker,the water salinity gradually decreases,the climate first becomes semi-humid and then warm and humid,and the input of terrigenous debris first decreases and then increases.A major marine transgression at the base of the K_(2)qn^(1)᾽s brought in nutrients to increase primary productivity,and the density-stratified reducing environment preserved and enriched organic matter.High primary productivity occurred during the middle of the deposition of the K_(2)qn^(1),while terrigenous input is low.Organic matter is preserved in reduced deep lake environments,resulting in organic matter-rich black shale.The lake became shallower,and the salinity decreased in the upper part of K_(2)qn^(1).Benthic organisms rapidly multiplied,consuming large amounts of oxygen and destroying the previously depositional environment,resulting in a reducing environment disturbed by benthic organisms with poor preservation conditions and the lowest organic matter content. 展开更多
关键词 major and trace elements paleoenvironment evolution OM enrichment mechanism lacustrine shale Songliao Basin Qingshankou Formation
原文传递
Enrichment mechanism and resource potential of shale-type helium:A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin 被引量:5
8
作者 Haikuan NIE Quanyou LIU +7 位作者 Wei DANG Pei LI Haikun SU Hanyong BAO Liang XIONG Zhujiang LIU Chuanxiang SUN Peixian ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第6期1279-1288,共10页
China’s helium resource is highly dependent on overseas imports.Organic-rich and U/Th-rich shale reservoirs generally contain helium,and although the helium content is low,the total reserve is large.Therefore,the eff... China’s helium resource is highly dependent on overseas imports.Organic-rich and U/Th-rich shale reservoirs generally contain helium,and although the helium content is low,the total reserve is large.Therefore,the effective development and utilisation of shale-type helium resources is a realistic way to improve the security of helium resources in China.In this study,the generation mechanism,helium source and content,migration modes and pathways,controlling factors of enrichment,distribution pattern,and resource potential of the helium were analysed,using the Wufeng-Longmaxi shale in the Sichuan Basin and its periphery.Furthermore,countermeasures were proposed for shale-type helium exploration and development.The results show that the Wufeng-Longmaxi shale has a high content of U and Th and a good ability to generate helium.The helium is generated by a typical crustal source of helium and is characterised by self-generation,self-storage,and wide distribution.The helium resource potential is a product of its content and the resources of the associated natural gas.The continuous supply of helium and effective preservation are the main geological factors that control the enrichment of shale-type helium.The preliminary evaluation results show that the reserves of helium in proven shale gas reserves are 10.8×10^(8)m^(3)in the Sichuan Basin and its periphery,where the extra-large helium fields are likely to be discovered.Additionally,0.0912×10^(8)m^(3)of helium was produced,along with the annual production of shale gas.To avoid the waste of helium and to improve the self-supply ability,it is suggested that research on the resource potential,enrichment mechanism,and distribution pattern of shale-type helium should be carried out as soon as possible,and helium extraction techniques for helium-bearing natural gas should be studied. 展开更多
关键词 SHALE Helium content enrichment mechanism Resource potential Sichuan Basin
原文传递
Distribution,enrichment mechanism and risk assessment for fluoride in groundwater:a case study of Mihe-Weihe River Basin,China 被引量:2
9
作者 Xingyue Qu Peihe Zhai +4 位作者 Longqing Shi Xingwei Qu Ahmer Bilal Jin Han Xiaoge Yu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第6期63-83,共21页
Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin(China),there is a higher risk for the future development and utilization of groundwater.Therefore,based o... Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin(China),there is a higher risk for the future development and utilization of groundwater.Therefore,based on the systematic sampling and analysis,the distribution features and enrichment mechanism for fluoride in groundwater were studied by the graphic method,hydrogeochemical modeling,the proportionality factor between conventional ions and factor analysis.The results show that the fluorine content in groundwater is generally on the high side,with a large area of medium-fluorine water(0.5–1.0 mg/L),and high-fluorine water is chiefly in the interfluvial lowlands and alluvial-marine plain,which mainly contains HCO_(3)·Cl-Na-and HCO_(3)^(-)Na-type water.The vertical zonation characteristics of the fluorine content decrease with increasing depth to the water table.The high flouride groundwater during the wet season is chiefly controlled by the weathering and dissolution of fluorine-containing minerals,as well as the influence of rock weathering,evaporation and concentration.The weak alkaline environment that is rich in sodium and poor in calcium during the dry season is the main reason for the enrichment of fluorine.Finally,an integrated assessment model is established using rough set theory and an improved matter element extension model,and the level of groundwater pollution caused by fluoride in the Mihe-Weihe River Basin during the wet and dry seasons in the Shandong Peninsula is defined to show the necessity for local management measures to reduce the potential risks caused by groundwater quality. 展开更多
关键词 Groundwater in the Mihe-Weihe River Basin Distribution characteristics of fluorine Factors influencing fluoride enrichment mechanism of fluorine Hydrogeochemical modeling Pollution and risk assessment
原文传递
Differences in and factors controlling organic matter enrichment in the Ziliujing Formation shale in the Sichuan Basin
10
作者 Peng Li Zhong-Bao Liu +4 位作者 He Bi Tao Jiang Rui-Kang Bian Peng-Wei Wang Xiao-Yu Shang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期77-86,共10页
Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two se... Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale. 展开更多
关键词 Lacustrine shale Ziliujing Formation Sichuan Basin enrichment mechanism of organic matter
在线阅读 下载PDF
Enrichment of tight oil and its controlling factors in central and western China 被引量:6
11
作者 SONG Yan LUO Qun +2 位作者 JIANG Zhenxue YANG Wei LIU Dongdong 《Petroleum Exploration and Development》 CSCD 2021年第2期492-506,共15页
Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,mo... Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,modeling experiment and comprehensive analysis,this study reveals that the tight oil accumulates at start-up pressure,advances under differential pressure,diffuses at alternating fast and low speeds,charges in stepped large area and migrates rapidly through fractures,and enriches in dominant fractures and pores.The root cause of ladder-like charge is the multiple scales of pores.The widespread source rock with high hydrocarbon generation intensity is the material basis for tight oil enrichment;the dominant source reservoir assemblage is the basic unit for tight oil enrichment;fractures and beddings are conducive to local rapid migration of tight oil;fractures and pores work together to control the enrichment of tight oil.Two typical accumulation models of tight oil are established,namely"source reservoir in coexistence,four optimal factors controlling enrichment around central area,and large-scale continuous distribution"for a large freshwater lake clastic rock basin and"source reservoir integration,four optimal factors controlling enrichment,central area distribution,small in size but high in enrichment degree"for a small saline lake diamictite depression. 展开更多
关键词 tight oil enrichment mechanism main control factor enrichment model central and western China
在线阅读 下载PDF
Rare earth elements-rich phase and enriching mechanism in sediments from CC area, the Pacific Ocean 被引量:2
12
作者 Meng Xianwei, Chen Zhihua, Wang Xiangqin, Liu Na (1. First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, China 2. Key Lab. of Marine Science and Numerical Modelling, State Oceanic Administration, Qingdao 266003, China) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第2期209-214,共6页
Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth el... Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth elements were completely enriched in phosphate-phase and cerium in iron-phase. Rare earth elements in the sediments were originally derived from seawater. During lithi- genic and minerogenic processes of metalliferous nodules, three-valence rare earth elements in sediments mobilized and incorporated into sediments as authigenous biogenic-apatite, while cerium had change from Ce3+ to Ce4+ and directly precipitated from seawater and entered metalliferous nodules and caused Ce anomalies in REE pattern in sediments. 展开更多
关键词 CC area of the Pacific Ocean SEDIMENTS rare earth elements REE- rich phase enriching mechanism
在线阅读 下载PDF
Influence of tectonic preservation conditions on the nanopore structure of shale reservoir:A case study of Wufeng-Longmaxi Formation shale in western Hubei area,south China
13
作者 Meng Xiang Shang Xu +2 位作者 Ya-Ru Wen Qi-Yang Gou Bing-Chang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2203-2217,共15页
Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu... Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots. 展开更多
关键词 Shale gas Pore structure Tectonic preservation conditions Shale gas enrichment mechanism
在线阅读 下载PDF
Enrichment conditions and metallogenic model of potassium and lithium resources in the Lower–Middle Triassic,northeastern Sichuan Basin,SW China
14
作者 SU Kelu ZHONG Jiaai +12 位作者 WANG Wei SHI Wenbin CHEN Zuqing LI Yuping FAN Zhiwei WANG Jianbo LIU Yong PAN Bei LIU Zhicheng JIANG Yanxia LIANG Zirui ZHANG Yuying WANG Fuming 《Petroleum Exploration and Development》 2025年第1期272-284,共13页
Wells CXD1 and CX2 have uncovered high-concentration potassium-and lithium-containing brines and substantial layers of halite-type polyhalite potash deposits within the 4th and 5th members of the Triassic Jialingjiang... Wells CXD1 and CX2 have uncovered high-concentration potassium-and lithium-containing brines and substantial layers of halite-type polyhalite potash deposits within the 4th and 5th members of the Triassic Jialingjiang Formation and the 1st Member of Leikoupo Formation(Jia 4 Member,Jia 5 Member,and Lei 1 Member)in the Puguang area,Sichuan Basin.These discoveries mark significant breakthroughs in the exploration of deep marine potassium and lithium resources within the Sichuan Basin.Utilizing the concept of“gas-potassium-lithium integrated exploration”and incorporating drilling,logging,seismic,and geochemical data,we have investigated the geological and enrichment conditions,as well as the metallogenic model of potassium-rich and lithium-rich brines and halite-type polyhalite.First,the sedimentary systems of gypsum-dolomite flats,salt lakes and evaporated flats were developed in Jia 4 Member,Jia 5 Member,and the 1st member of Leikoupo Formation(Lei 1 Member)in northeastern Sichuan Basin,forming three large-scale salt-gathering and potassium formation centers in Puguang,Tongnanba and Yuanba,and developing reservoirs with potassium-rich and lithium-rich brines,which are favorable for the deposition of potassium and lithium resources in both solid or liquid phases.Second,the soluble halite-type polyhalite has a large thickness and wide distribution,and the reservoir brine has a high content of K+and Li+.A solid-liquid superimposed“three-story structure”(with the lower thin-layer of brine reservoir in lower part of Jia 4 Member and Jia 5 Member,middle layer of halite-type polyhalite potash depositS,upper layer of potassium-rich and lithium-rich brine reservoir in Lei 1 Member)is formed.Third,the ternary enrichment and mineralization patterns for potassium and lithium resources were determined.Vertical superposition of polyhalite and green bean rocks is the mineral material basis of potassium-lithium resources featuring“dual-source replenishment and proximal-source release”,with primary seawater and gypsum dehydration as the main sources of deep brines,while multi-stage tectonic modification is the key to the enrichment of halite-type polyhalite and potassiumlithium brines.Fourth,the ore-forming process has gone through four stages:salt-gathering and potassium-lithium accumulation period,initial water-rock reaction period,transformation and aggregation period,and enrichment and finalization period.During this process,the halite-type polyhalite layer in Jia 4 Member and Jia 5 Member is the main target for potassium solution mining,while the brine layer in Lei 1 Member is the focus of comprehensive potassium-lithium exploration and development. 展开更多
关键词 potassium-lithium resources halite-type polyhalite potassium-rich and lithium-rich brine enrichment mechanism Triassic Jialingjiang Formation Leikoupo Formation Puguang area Sichuan Basin
在线阅读 下载PDF
Enrichment model of continental shale oil in Zhanhua Sag of Jiyang Depression
15
作者 SU Siyuan CHENG Cheng +2 位作者 JIANG Zhenxue SHAN Xuanlong YOUSIF M.Makeen 《Global Geology》 2025年第1期35-47,共13页
The quest for enrichment model of continental shale oil in the Zhanhua Sag of the JiyangDepression in the Bohai Bay Basin to provide reference for exploration and development requires acomprehensive approach. Therefor... The quest for enrichment model of continental shale oil in the Zhanhua Sag of the JiyangDepression in the Bohai Bay Basin to provide reference for exploration and development requires acomprehensive approach. Therefore, this study employs rock pyrolysis, Scanning Electron Microscopy(SEM), X-Ray diffraction analysis (XRD), Nuclear Magnetic Resonance (NMR), and other experiments toanalyze the conditions for shale oil enrichment and establish its patterns. The results show that favorablehydrocarbon generation potential and appropriate thermal maturation degree control “in situ enrichment”;while the storage capacity and the mobility of shale oil determine “migration enrichment.” In the process,the TOC governs the oil-generating capacity of shale with medium to large pores and microfractures servingas the main enrichment spaces and migration pathways for shale oil. Based on the deposition model, thestudy area can be divided into five lithofacies stages (I-algal limestone, II-laminated marl, III-laminatedrecrystallized limestone, IV-laminated mudstones, and IV-blocky calcareous mudstones). Integrating thegeochemical parameters into the sedimentary patterns makes it clear that the study area underwent two phasesof hydrocarbon expulsion during the thermal evolution of source rocks (Stage II: 3 060–3 120 m and StageIV: 3 020–3 040 m). However, judging by the observed TOC (2% to 5.6%), thermal maturity (Ro>0.8%),S1 (>2 mg/g) and OSI (>100 mg/g) as well as moderate basin size, climate, and quantity of terrestrial input,the blocky calcareous mudstones (Stage IV) have better oil-prone characteristics and potential to generate asubstantial quantity of hydrocarbons at this stage. More so, with a brittleness index exceeding 60%, it exhibitsfavorable fracturability accounting for the main controlling factors and enrichment patterns of shale oil in thearea. Hence, this study further enriches and develops the theoretical understanding of shale oil enrichment inthe area, provides valuable insights for future exploration of continental shale oil in eastern China and othersimilar basin around the world. 展开更多
关键词 shale oil enrichment mechanism in situ enrichment migration enrichment enrichment pattern
在线阅读 下载PDF
Source,migration,distribution,toxicological effects and remediation technologies of arsenic in groundwater in China 被引量:1
16
作者 Zhen Wang Hua-ming Guo +1 位作者 Hai-yan Liu Wei-min Zhang 《China Geology》 CAS CSCD 2023年第3期476-493,共18页
Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney ... Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources,migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments.The content of As in groundwater varies widely, and As(Ⅲ) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(Ⅲ) is far more than As(V), which is considered to be more toxic than methyl arsenate(MMA) and dimethyl arsenate(DMA). Inorganic As entering the body is metabolized through a combination of methylation(detoxification) and reduction(activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world. 展开更多
关键词 High arsenic groundwater Source and distribution enrichment mechanism Skin cancer Liver cancer Kidney cancer Toxicological effect Remediation technology Ecological geological survey engineering Hydrogeological survey engineering
在线阅读 下载PDF
Geological characteristics,resource potential,and development direction of shale gas in China
17
作者 GUO Xusheng WANG Ruyue +3 位作者 SHEN Baojian WANG Guanping WAN Chengxiang WANG Qianru 《Petroleum Exploration and Development》 2025年第1期17-32,共16页
By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale ga... By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China. 展开更多
关键词 shale gas marine shale transitional shale lacustrine shale source-reservoir configuration enrichment mechanism resource potential
在线阅读 下载PDF
Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation
18
作者 Dian-he Liu Cheng-lin Liu +1 位作者 Chun-lian Wang Xiao-can Yu 《China Geology》 2025年第1期1-25,共25页
In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth... In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth.In order to further comprehensively understand the global supply and demand pattern,development and utilization status,genesis of ore deposits and other characteristics of lithium resources,based on the achievements of many researchers at home and abroad,this paper systematically summarized the lithium supply and demand situation,resource endowment,deposit classification and distribution,typical geological characteristics,metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world.The review shows that brine-type lithium resource and(or)reserves in the plateau salt lakes are huge and play an important role.In addition,the mineralization potential of the underground brine-type lithium deposit is broad worldwide.The potential resources of underground brines are enormous,and the geothermal spring water type is also worthy of attention.Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics,arid climate and provenance conditions.Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources. 展开更多
关键词 Brine in plateau salt lake Underground brine Geothermal spring brine Terrestrial brine classification Lithium migration mechanism Brine genesis Mineral exploration engineering Lithium enrich mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部