With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Emotion-cause pair extraction(ECPE)aims to extract all the pairs of emotions and corresponding causes in a document.It generally contains three subtasks,emotions extraction,causes extraction,and causal relations detec...Emotion-cause pair extraction(ECPE)aims to extract all the pairs of emotions and corresponding causes in a document.It generally contains three subtasks,emotions extraction,causes extraction,and causal relations detection between emotions and causes.Existing works adopt pipelined approaches or multi-task learning to address the ECPE task.However,the pipelined approaches easily suffer from error propagation in real-world scenarios.Typical multi-task learning cannot optimize all tasks globally and may lead to suboptimal extraction results.To address these issues,we propose a novel framework,Pairwise Tagging Framework(PTF),tackling the complete emotion-cause pair extraction in one unified tagging task.Unlike prior works,PTF innovatively transforms all subtasks of ECPE,i.e.,emotions extraction,causes extraction,and causal relations detection between emotions and causes,into one unified clause-pair tagging task.Through this unified tagging task,we can optimize the ECPE task globally and extract more accurate emotion-cause pairs.To validate the feasibility and effectiveness of PTF,we design an end-to-end PTF-based neural network and conduct experiments on the ECPE benchmark dataset.The experimental results show that our method outperforms pipelined approaches significantly and typical multi-task learning approaches.展开更多
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.61976114 and 61936012)the National Key R&D Program of China(2018YFB1005102).
文摘Emotion-cause pair extraction(ECPE)aims to extract all the pairs of emotions and corresponding causes in a document.It generally contains three subtasks,emotions extraction,causes extraction,and causal relations detection between emotions and causes.Existing works adopt pipelined approaches or multi-task learning to address the ECPE task.However,the pipelined approaches easily suffer from error propagation in real-world scenarios.Typical multi-task learning cannot optimize all tasks globally and may lead to suboptimal extraction results.To address these issues,we propose a novel framework,Pairwise Tagging Framework(PTF),tackling the complete emotion-cause pair extraction in one unified tagging task.Unlike prior works,PTF innovatively transforms all subtasks of ECPE,i.e.,emotions extraction,causes extraction,and causal relations detection between emotions and causes,into one unified clause-pair tagging task.Through this unified tagging task,we can optimize the ECPE task globally and extract more accurate emotion-cause pairs.To validate the feasibility and effectiveness of PTF,we design an end-to-end PTF-based neural network and conduct experiments on the ECPE benchmark dataset.The experimental results show that our method outperforms pipelined approaches significantly and typical multi-task learning approaches.