期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Joint eigenvalue estimation by balanced simultaneous Schur decomposition
1
作者 付佗 高西奇 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期445-450,共6页
The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur d... The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality. 展开更多
关键词 direction of arrival multi-dimensional harmonic retrieval joint eigenvalue simultaneous Schur decomposition balance algorithm
在线阅读 下载PDF
Mode decomposition of nonlinear eigenvalue problems and application in flow stability 被引量:2
2
作者 高军 罗纪生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第6期667-674,共8页
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th... Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results. 展开更多
关键词 nonlinear eigenvalue problem mode decomposition spatial mode adjoint equation orthogonal relationship
在线阅读 下载PDF
Derivative of a Determinant with Respect to an Eigenvalue in the <i>LDU</i>Decomposition of a Non-Symmetric Matrix 被引量:1
3
作者 Mitsuhiro Kashiwagi 《Applied Mathematics》 2013年第3期464-468,共5页
We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matr... We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it. 展开更多
关键词 DERIVATIVE of DETERMINANT Non-Symmetric MATRIX eigenvalue Band MATRIX LDU decomposition
在线阅读 下载PDF
Derivative of a Determinant with Respect to an Eigenvalue in the Modified Cholesky Decomposition of a Symmetric Matrix, with Applications to Nonlinear Analysis
4
作者 Mitsuhiro Kashiwagi 《American Journal of Computational Mathematics》 2014年第2期93-103,共11页
In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method i... In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness. 展开更多
关键词 DERIVATIVE of a DETERMINANT with RESPECT to an eigenvalue MODIFIED Cholesky decomposition Symmetric Matrix Nonlinear FINITE-ELEMENT Methods Singular Points
在线阅读 下载PDF
基于自组织神经网络的EVD杂波抑制算法
5
作者 史家琪 杨明磊 +2 位作者 连昊 叶舟 徐光辉 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期46-57,共12页
强杂波环境下慢速运动目标的杂波抑制一直是雷达领域的研究难点,通过子空间分解法来抑制杂波是一种常用的方法,但传统子空间分解法依赖于过往经验选取杂波基、自适应性差。基于K-均值聚类的SVD杂波抑制算法弥补了上述缺陷,然而当慢速运... 强杂波环境下慢速运动目标的杂波抑制一直是雷达领域的研究难点,通过子空间分解法来抑制杂波是一种常用的方法,但传统子空间分解法依赖于过往经验选取杂波基、自适应性差。基于K-均值聚类的SVD杂波抑制算法弥补了上述缺陷,然而当慢速运动目标与杂波在多普勒谱上接近或混叠时,这种算法的特征集区分度大幅下降,聚类结果变得不稳定。为此提出了一种基于自组织神经网络的特征值分解杂波抑制算法。首先,深入分析慢速运动目标和杂波、噪声的差异,利用回波信号矩阵特征值分解后得到的特征值和特征向量,提取针对慢速运动目标和杂波区分度高的特征来构建特征集。其次,采用受初始值影响小、聚类结果稳定的自组织神经网络进行聚类,自适应选取构造杂波子空间的杂波基,最后通过正交子空间投影来抑制杂波。仿真和实测数据结果表明该算法能有效抑制强静止杂波和慢速杂波,实现对慢速运动目标的检测,算法具有较强的稳健性和工程实用性。 展开更多
关键词 慢速运动目标 杂波 特征值分解 自组织神经网络
在线阅读 下载PDF
Modified multiple-component scattering power decomposition for PolSAR data based on eigenspace of coherency matrix
6
作者 ZHANG Shuang WANG Lu WANG Wen-Qing 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期572-581,共10页
A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of ... A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets. 展开更多
关键词 PolSAR data model-based decomposition eigenvalue decomposition scattering power
在线阅读 下载PDF
EVD算法在踝臂指数测量中的应用 被引量:3
7
作者 刘宝华 戴成武 《传感技术学报》 CAS CSCD 北大核心 2010年第1期19-23,共5页
踝臂指数测量的关键是上、下肢收缩压值的精确测量,由于脚踝部位有多条动脉血管,一些动脉血管在加压袖带较高压力下也不能被完全阻断,导致下肢收缩压测量出现误差。本文用一维采样数据构建延迟矢量,由这些延迟矢量组成一个内嵌式矩阵,... 踝臂指数测量的关键是上、下肢收缩压值的精确测量,由于脚踝部位有多条动脉血管,一些动脉血管在加压袖带较高压力下也不能被完全阻断,导致下肢收缩压测量出现误差。本文用一维采样数据构建延迟矢量,由这些延迟矢量组成一个内嵌式矩阵,在此基础上对此内嵌式矩阵进行盲信号分离。仿真和实验表明,应用该方法可以分离出脚踝处包含收缩压信息的动脉血管的波动信号,解决了踝臂指数下肢收缩压测量的难点。 展开更多
关键词 信号处理 盲信号处理 踝臂指数 动态嵌入 特征值分解
在线阅读 下载PDF
基于一般散射模型的Hybrid Freeman/Eigenvalue分解算法(英文) 被引量:3
8
作者 张爽 王爽 +4 位作者 焦李成 陈博 刘芳 毛莎莎 柯熙政 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2015年第3期265-270,共6页
提出了一种新的基于一般散射模型的hybrid Freeman/eigenvalue分解算法,用于分析极化合成孔径雷达(PolS AR)数据。文中,单位矩阵作为体散射模型,相干矩阵的两个较大特征值对应的特征向量作为表面散射模型和二次散射模型,并且不需要反射... 提出了一种新的基于一般散射模型的hybrid Freeman/eigenvalue分解算法,用于分析极化合成孔径雷达(PolS AR)数据。文中,单位矩阵作为体散射模型,相干矩阵的两个较大特征值对应的特征向量作为表面散射模型和二次散射模型,并且不需要反射对称条件。新算法有三个优点:第一,表面散射和二次散射不需要反射对称条件,更符合一般散射体的建模;第二,因为散射能量是相干矩阵特征值的线性组合,所以散射能量具有旋转不变性;第三,表面散射能量和二次散射能量避免了负值现象。在San Francisco地区的AIRSAR数据上进行了实验,证明了新算法的有效性。 展开更多
关键词 极化合成孔径雷达 雷达极化 HYBRID Freeman/eigenvalue分解 散射模型
在线阅读 下载PDF
一种自适应的混合Freeman/Eigenvalue极化分解模型 被引量:2
9
作者 何连 秦其明 任华忠 《国土资源遥感》 CSCD 北大核心 2017年第2期8-14,共7页
全极化SAR数据的极化分解在土地利用分类、目标检测与识别以及地表参数反演等领域得到了广泛应用。目前,主要有基于特征值分解和基于模型分解2类极化分解方法。混合Freeman/Eigenvalue极化分解结合了两者的优势,避免了基于模型的极化分... 全极化SAR数据的极化分解在土地利用分类、目标检测与识别以及地表参数反演等领域得到了广泛应用。目前,主要有基于特征值分解和基于模型分解2类极化分解方法。混合Freeman/Eigenvalue极化分解结合了两者的优势,避免了基于模型的极化分解中负功率问题并且能够利用已知的散射机制解释分解后的散射分量。为了进一步拓展该分解在不同地表类型中的应用,通过引入参数Neumann一般化体散射模型,提出了一种自适应的极化分解模型。利用德国Black Forest地区的L波段AirSAR(airborne synthetic aperture Radar)全极化数据进行实验,并与现有的Yamaguchi三分量模型和自适应非负分解(adaptive nonnegative eigenvalue decomposition,ANNED)对比分析,以验证模型的有效性。研究表明,自适应的混合Freeman/Eigenvalue极化分解模型保证了分解能量的非负性及完全分解,适应于不同类型的地表,能有效地区分不同地类。 展开更多
关键词 PolSAR 极化分解 Freeman/eigenvalue分解 Neumann体散射模型
在线阅读 下载PDF
基于随机矩阵建模的低空飞行器跟踪方法
10
作者 李坤坤 程婕 +2 位作者 张智香 胡爽 吴力华 《雷达科学与技术》 北大核心 2025年第1期67-74,共8页
近年来,服务于环境监测、应急救援等任务的低空飞行器使用频次日益上升,在创造良好社会经济效益的同时也带来空域监管压力。针对空管高分辨雷达跟踪识别具有扩展形态的低空飞行器,本文提出一种基于随机矩阵建模的飞行器跟踪及其外形参... 近年来,服务于环境监测、应急救援等任务的低空飞行器使用频次日益上升,在创造良好社会经济效益的同时也带来空域监管压力。针对空管高分辨雷达跟踪识别具有扩展形态的低空飞行器,本文提出一种基于随机矩阵建模的飞行器跟踪及其外形参数估计方法。首先,根据高分辨雷达探测该类飞行器时雷达单帧多量测及飞行器主体外形近似为椭圆体的特点,引入可描述椭圆(体)的对称正定随机矩阵建模其扩展外形;其次,基于高斯逆威沙特分布滤波估计飞行器的运动状态、扩展外形矩阵;最后,对扩展外形矩阵估计结果进行特征值分解,使用特征值平方根及最大特征值对应的特征向量分别估计飞行器的半轴尺寸及主轴方向,从而实现飞行器扩展外形参数的在线估计。仿真实验结果表明,本文滤波方法具有良好的低空飞行器跟踪性能,可为识别具有扩展形态的低空飞行器提供信息支撑。 展开更多
关键词 低空飞行器 运动状态 扩展外形 随机矩阵 特征值分解
在线阅读 下载PDF
基于EVD分解的OFDM系统时变信道估计
11
作者 丁敬校 王可人 金虎 《电路与系统学报》 北大核心 2013年第1期412-416,共5页
OFDM系统中,需要获得信道状态信息实现相干解调。信道的时变性会带来子载波间干扰(ICI),降低信道估计算法的精度。针对信道的快时变性,提出一种基于特征值分解的时变信道估计方法,同时设计一种新的导频结构。该方法利用信道矩阵时域及... OFDM系统中,需要获得信道状态信息实现相干解调。信道的时变性会带来子载波间干扰(ICI),降低信道估计算法的精度。针对信道的快时变性,提出一种基于特征值分解的时变信道估计方法,同时设计一种新的导频结构。该方法利用信道矩阵时域及频域相关性,将信道频域矩阵表示为其特征向量的线性加权,并用贝叶斯模型估计加权系数。仿真结果表明,所提方法能有效降低ICI对系统性能的影响,可较好地满足快时变信道环境的要求。 展开更多
关键词 OFDM 信道估计 时变信道 特征值分解
在线阅读 下载PDF
A bearing fault feature extraction method based on cepstrum pre-whitening and a quantitative law of symplectic geometry mode decomposition 被引量:3
12
作者 Chen Yiya Jia Minping Yan Xiaoan 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期33-41,共9页
In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault... In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings. 展开更多
关键词 cepstrum pre-whitening symplectic geometry mode decomposition eigenvalue quantitative law feature extraction
在线阅读 下载PDF
Modified version of three-component model-based decomposition for polarimetric SAR data 被引量:1
13
作者 ZHANG Shuang YU Xiangchuan WANG Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期270-277,共8页
A new hybrid Freeman/eigenvalue decomposition based on the orientation angle compensation and the various extended volume models for polarimetric synthetic aperture radar(PolSAR) data are presented. There are three st... A new hybrid Freeman/eigenvalue decomposition based on the orientation angle compensation and the various extended volume models for polarimetric synthetic aperture radar(PolSAR) data are presented. There are three steps in the novel version of the three-component model-based decomposition.Firstly, two special unitary transform matrices are applied on the coherency matrix for deorientation to decrease the correlation between the co-polarized term and the cross-polarized term.Secondly, two new conditions are proposed to distinguish the manmade structures and the nature media after the orientation angle compensation. Finally, in order to adapt to the scattering properties of different media, five different volume scattering models are used to decompose the coherency matrix. These new conditions pre-resolves man-made structures, which is beneficial to the subsequent selection of a more suitable volume scattering model.Fully PolSAR data on San Francisco are used in the experiments to prove the efficiency of the proposed hybrid Freeman/eigenvalue decomposition. 展开更多
关键词 polarimetric synthetic aperture RADAR (PolSAR) RADAR polarimetry hybrid Freeman/eigenvalue decomposition scattering model
在线阅读 下载PDF
A NEW METHOD FOR ESTIMATING BOUNDS OF EIGENVALUES 被引量:1
14
作者 Yang Xiaowei Chen Suhuan +1 位作者 Lian Huadong Yang Guang 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第3期242-250,共9页
A new method for estimating the bounds of eigenvalues ispresented. In order to show that the method proposed is as effectiveas Qiu's an undamping spring-mass system with 5 nodes and 5 degrees ofreedom is given. To... A new method for estimating the bounds of eigenvalues ispresented. In order to show that the method proposed is as effectiveas Qiu's an undamping spring-mass system with 5 nodes and 5 degrees ofreedom is given. To illustrate that the present method can beapplied to structures which cannot be treated by non-negativedecomposition, a plane frame with 202 nodes and 357 beam elements isgiven. The results show that the present method is effective forestimating the bounds of eigenvalues and is more common than Qiu's. 展开更多
关键词 bounds of eigenvalues non-negative decomposition eigenvalue inclusiontheorem
在线阅读 下载PDF
基于EVD变换的鲁棒音频水印算法
15
作者 童人婷 程航 张新鹏 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期388-397,共10页
常见的数字信号处理往往会改变音频信号的高频分量并引入随机噪声,并且易造成数字水印信息的位置改变.提出了一种新的数字音频水印算法.在该算法中,原始音频被分为两部分:1运用量化索引调制来嵌入伪随机序列生成的二值同步码;2利用特征... 常见的数字信号处理往往会改变音频信号的高频分量并引入随机噪声,并且易造成数字水印信息的位置改变.提出了一种新的数字音频水印算法.在该算法中,原始音频被分为两部分:1运用量化索引调制来嵌入伪随机序列生成的二值同步码;2利用特征值分解(eigenvalue decomposition,EVD)方法先对离散小波变换(discrete wavelet transform,DWT)低频系数进行变换,然后在生成的对角阵中用量化索引调制嵌入水印信息.实验结果表明,在确保不可感知性和较强鲁棒性的前提下,可大幅度提高水印嵌入容量,达到172 bit/s. 展开更多
关键词 音频水印 特征值分解 鲁棒 高容量
在线阅读 下载PDF
Subspace decomposition-based correlation matrix multiplication
16
作者 Cheng Hao Guo Wei Yu Jingdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期241-245,共5页
The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix... The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented. 展开更多
关键词 subspace theory correlation matrix eigenvalue decomposition direct sequence spread spectrum signal
在线阅读 下载PDF
Decompositions of Some Special Block Tridiagonal Matrices
17
作者 Hsin-Chu Chen 《Advances in Linear Algebra & Matrix Theory》 2021年第2期54-65,共12页
In this paper, we present a unified approach to decomposing a special class of block tridiagonal matrices <i>K</i> (<i>α</i> ,<i>β</i> ) into block diagonal matrices using similar... In this paper, we present a unified approach to decomposing a special class of block tridiagonal matrices <i>K</i> (<i>α</i> ,<i>β</i> ) into block diagonal matrices using similarity transformations. The matrices <i>K</i> (<i>α</i> ,<i>β</i> )∈ <i>R</i><sup><i>pq</i>× <i>pq</i></sup> are of the form <i>K</i> (<i>α</i> ,<i>β</i> = block-tridiag[<i>β B</i>,<i>A</i>,<i>α B</i>] for three special pairs of (<i>α</i> ,<i>β</i> ): <i>K</i> (1,1), <i>K</i> (1,2) and <i>K</i> (2,2) , where the matrices <i>A</i> and <i>B</i>, <i>A</i>, <i>B</i>∈ <i>R</i><sup><i>p</i>× <i>q</i></sup> , are general square matrices. The decomposed block diagonal matrices <img src="Edit_00717830-3b3b-4856-8ecd-a9db983fef19.png" width="15" height="15" alt="" />(<i>α</i> ,<i>β</i> ) for the three cases are all of the form: <img src="Edit_71ffcd27-6acc-4922-b5e2-f4be15b9b8dc.png" width="15" height="15" alt="" />(<i>α</i> ,<i>β</i> ) = <i>D</i><sub>1</sub> (<i>α</i> ,<i>β</i> ) ⊕ <i>D</i><sub>2</sub> (<i>α</i> ,<i>β</i> ) ⊕---⊕ <i>D</i><sub>q</sub> (<i>α</i> ,<i>β</i> ) , where <i>D<sub>k</sub></i> (<i>α</i> ,<i>β</i> ) = <i>A</i>+ 2cos ( <i>θ<sub>k</sub></i> (<i>α</i> ,<i>β</i> )) <i>B</i>, in which <i>θ<sub>k</sub></i> (<i>α</i> ,<i>β</i> ) , k = 1,2, --- q , depend on the values of <i>α</i> and <i>β</i>. Our decomposition method is closely related to the classical fast Poisson solver using Fourier analysis. Unlike the fast Poisson solver, our approach decomposes <i>K</i> (<i>α</i> ,<i>β</i> ) into <i>q</i> diagonal blocks, instead of <i>p</i> blocks. Furthermore, our proposed approach does not require matrices <i>A</i> and <i>B</i> to be symmetric and commute, and employs only the eigenvectors of the tridiagonal matrix <i>T</i> (<i>α</i> ,<i>β</i> ) = tridiag[<i>β b</i>, <i>a</i>,<i>αb</i>] in a block form, where <i>a</i> and <i>b</i> are scalars. The transformation matrices, their inverses, and the explicit form of the decomposed block diagonal matrices are derived in this paper. Numerical examples and experiments are also presented to demonstrate the validity and usefulness of the approach. Due to the decoupled nature of the decomposed matrices, this approach lends itself to parallel and distributed computations for solving both linear systems and eigenvalue problems using multiprocessors. 展开更多
关键词 Block Tridiagonal Matrices Block Fourier decomposition Linear Systems eigenvalue Problems
在线阅读 下载PDF
Hamiltonian Polynomial Eigenvalue Problems
18
作者 Mustapha Bassour 《Journal of Applied Mathematics and Physics》 2020年第4期609-619,共11页
We present in this paper a new method for solving polynomial eigenvalue problem. We give methods that decompose a skew-Hamiltonian matrix using Cholesky like-decomposition. We transform first the polynomial eigenvalue... We present in this paper a new method for solving polynomial eigenvalue problem. We give methods that decompose a skew-Hamiltonian matrix using Cholesky like-decomposition. We transform first the polynomial eigenvalue problem to an equivalent skew-Hamiltonian/Hamiltonian pencil. This process is known as linearization. Decomposition of the skew-Hamiltonian matrix is the fundamental step to convert a structured polynomial eigenvalue problem into a standard Hamiltonian eigenproblem. Numerical examples are given. 展开更多
关键词 HAMILTONIAN Matrix POLYNOMIAL eigenvalue Problem Skew-Hamiltonian/Hamiltonian PENCIL Cholesky Like-decomposition
在线阅读 下载PDF
可对角化矩阵特征值分解扰动问题的快速求解方法
19
作者 胡志祥 杨其东 +1 位作者 黄潇 贺文宇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期119-126,共8页
针对特征值扰动计算的传统方法收敛速度慢的问题,提出了一种求解特征值扰动问题的快速迭代算法.首先,通过矩阵变换将初始矩阵的特征值扰动问题转化为对角矩阵的特征值扰动问题.然后,提出了一种快速迭代算法求解扰动参数,同时对算法的收... 针对特征值扰动计算的传统方法收敛速度慢的问题,提出了一种求解特征值扰动问题的快速迭代算法.首先,通过矩阵变换将初始矩阵的特征值扰动问题转化为对角矩阵的特征值扰动问题.然后,提出了一种快速迭代算法求解扰动参数,同时对算法的收敛性进行分析,并将其与基于摄动级数展开法导出的方法进行对比.再次,采用逐一求解特征值并进行矩阵降阶的策略,有效降低运算量.最后,通过2个算例分别展示算法的计算过程及其在结构模态参数追踪方面的应用效果. 展开更多
关键词 特征值分解 特征值扰动 摄动级数展开法 可对角化矩阵 收敛性分析
在线阅读 下载PDF
基于复杂度追踪的模态参数识别方法对比研究
20
作者 胡志祥 黄磊 +1 位作者 郅伦海 胡峰 《振动与冲击》 EI CSCD 北大核心 2024年第15期22-31,共10页
复杂度追踪(complexity pursuit, CP)是求解振动信号盲源分离(blind source separation, BSS)问题的一类经典方法。用复杂度追踪估计解混矩阵主要有基于源信号复杂度计算的梯度下降(complexity pursuit-gradient descent, CP-GD)算法和... 复杂度追踪(complexity pursuit, CP)是求解振动信号盲源分离(blind source separation, BSS)问题的一类经典方法。用复杂度追踪估计解混矩阵主要有基于源信号复杂度计算的梯度下降(complexity pursuit-gradient descent, CP-GD)算法和基于时间可预测度的广义特征值分解(temporal predictability-generalized eigenvalue decomposition, TP-GED)算法。当前,这两种算法的关联性与算法性能尚缺乏研究,因此对这两种算法的等价性和计算性能进行了研究。首先,给出CP-GD和TP-GED两种算法的具体理论及算法流程;其次,利用二、三自由度振动系统直观地展示并对比解混向量对应的源信号复杂度及可预测度的变化规律;最后,通过对多工况下多自由度系统的模态参数识别算例,对比研究两种算法的精度及计算量。研究结果表明:在低阻尼比及高信噪比条件下,两种方法得到的解混矩阵是相同的;考虑到计算信号复杂度和梯度下降较为耗时,CP-GD算法计算代价要高于TP-GED算法。 展开更多
关键词 盲源分离(BSS) 模态参数识别 柯尔莫哥洛夫复杂度 时间可预测度(TP) 梯度下降(GD) 广义特征值分解(GED)
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部