期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
Global Climate Internal Variability in a 2000-year Control Simulation with Community Earth System Model(CESM) 被引量:13
1
作者 WANG Zhiyuan LI Yao +1 位作者 LIU Bin LIU Jian 《Chinese Geographical Science》 SCIE CSCD 2015年第3期263-273,共11页
Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation ... Using the low-resolution (T31, equivalent to 3.75°× 3.75°) version of the Community Earth System Model (CESM) from the National Center for Atmospheric Research (NCAR), a global climate simulation was carried out with fixed external forcing factors (1850 Common Era. (C.E.) conditions) for the past 2000 years. Based on the simulated results, spatio-temporal structures of surface air temperature, precipitation and internal variability, such as the E1 Nifio-Southem Oscillation (ENSO), the Atlantic Multi-decadal Oscilla- tion (AMO), the Pacific Decadal Oscillation (PDO), and the North Atlantic Oscillation (NAO), were compared with reanalysis datasets to evaluate the model performance. The results are as follows: 1) CESM showed a good performance in the long-term simulation and no significant climate drift over the past 2000 years; 2) climatological patterns of global and regional climate changes simulated by the CESM were reasonable compared with the reanalysis datasets; and 3) the CESM simulated internal natural variability of the climate system performs very well. The model not only reproduced the periodicity of ENSO, AMO and PDO events but also the 3-8 years vari- ability of the ENSO. The spatial distribution of the CESM-simulated NAO was also similar to the observed. However, because of weaker total irradiation and greenhouse gas concentration forcing in the simulation than the present, the model performances had some differences from the observations. Generally, the CESM showed a good performance in simulating the global climate and internal natu- ral variability of the climate system. This paves the way for other forced climate simulations for the past 2000 years by using the CESM. 展开更多
关键词 Community earth system model (CESM) climate simulation past 2000 years climate system intemal variability
在线阅读 下载PDF
Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model(NESM) 被引量:10
2
作者 CAO Jian Bin WANG +5 位作者 Baoqiang XIANG Juan LI WU Tianjie Xiouhua FU WU Liguang MIN Jinzhong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期585-600,共16页
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nu... A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO. 展开更多
关键词 coupled climate model earth system model climate variability
在线阅读 下载PDF
Coupling of the Calculated Freezing and Thawing Front Parameterization in the Earth System Model CAS-ESM 被引量:4
3
作者 Ruichao LI Jinbo XIE +5 位作者 Zhenghui XIE Binghao JIA Junqiang GAO Peihua QIN Longhuan WANG Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1671-1688,共18页
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro... The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process. 展开更多
关键词 frozen ground freezing and thawing fronts maximum freezing depth active layer thickness earth system model CAS-ESM
在线阅读 下载PDF
Regional earth system modeling:review and future directions 被引量:6
4
作者 Filippo GIORGI GAO Xue-Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第2期189-197,共9页
The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol an... The authors review recent advances in the development of coupled Regional Earth System Models (RESMs),a field that is still in its early stages.To date,coupled regional atmosphere-ocean-sea ice,atmosphere-aerosol and atmosphere-biosphere models have been developed,but they have been applied onlyto limited regional settings.Much more work is thus needed to assess their transferability to a wide range of settings.Future challenges in regional climate modeling are identified,including the development of fully coupled RESMs encompassing not only atmosphere,ocean,cryosphere,biosphere,chemosphere,but also the human component in a fully interactive way. 展开更多
关键词 Regional climate model regional earth system model atmosphere-ocean coupling atmosphere-aerosolcoupling
在线阅读 下载PDF
Quantifying the impacts of fire aerosols on global terrestrial ecosystem productivity with the fully-coupled Earth system model CESM 被引量:2
5
作者 LI Fang 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期330-337,共8页
Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the... Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity. 展开更多
关键词 Fire aerosols terrestrial ecosystem gross primary productivity land–atmosphere interaction earth system model
在线阅读 下载PDF
Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model 被引量:1
6
作者 王军 包庆 +3 位作者 Ning ZENG 刘屹岷 吴国雄 纪多颖 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1549-1559,共11页
Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC ... Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-I and net pri- mary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model- simulated Nifio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 2-7 years. Further analysis indicates their correlation coefficient reaches -0.7 when NEP lags the Nifio3.4 index for about 1-2 months. 展开更多
关键词 earth system model (ESM) Dynamic Global Vegetation model (DGVM) carbon cycle sea- sonal cycle interannual variability
在线阅读 下载PDF
Global air-sea CO_(2) exchange fl ux since 1980s: results from CMIP6 Earth System Models 被引量:1
7
作者 Baoxiao QU Jinming SONG +3 位作者 Xuegang LI Huamao YUAN Kun ZHANG Suqing XU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1417-1436,共20页
The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In thi... The ocean could profoundly modulate the ever-increasing atmospheric CO_(2) by air-sea CO_(2) exchange process,which is also able to cause signifi cant changes of physical and biogeochemical properties in return.In this study,we assessed the long-term average and spatial-temporal variability of global air-sea CO_(2) exchange fl ux(F CO_(2))since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6(CMIP6)Earth System Models(ESMs).Our fi ndings indicate that the CMIP6 ESMs simulated global CO_(2) sink in recent three decades ranges from 1.80 to 2.24 Pg C/a,which is coincidence with the results of cotemporaneous observations.What’s more,the CMIP6 ESMs consistently show that the global oceanic CO_(2) sink has gradually intensifi ed since 1980s as well as the observations.This study confi rms the simulated F CO_(2) could reach agreements with the observations in the aspect of primary climatological characteristics,however,the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness.None of the 18 CMIP6 ESMs could reproduce the observed F CO_(2) increasement in the central-eastern tropical Pacifi c and the midlatitude Southern Ocean.Defi ciencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation(ENSO)mode of the tropical Pacifi c are probably the major causes. 展开更多
关键词 air-sea CO_(2)fl ux Coupled model Intercomparison Project Phase 6(CMIP6) earth system model(ESM) long-term average spatial-temporal variability
在线阅读 下载PDF
Simulations of dissolved oxygen concentration in CMIP5 Earth system models
8
作者 BAO Ying LI Yangchun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第12期28-37,共10页
The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project... The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature(SST), with both globally-averaged error and root mean square error(RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones(OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation(MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water(NADW), Antarctic Bottom Water(AABW) and North Pacific Intermediate Water(NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively.Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation. 展开更多
关键词 dissolved oxygen CMIP5 earth system model meridional overturning circulation particulate organic carbon flux
在线阅读 下载PDF
Investigating the effect of the Tibetan Plateau on the ITCZ using a coupled Earth system model
9
作者 Chuqiao Yan Jie Yao +1 位作者 Xingchen Shen Haijun Yang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期53-58,共6页
本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带(ITCZ)的影响.我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性.与目前真实情况相比,移除青藏高原会导致北半球海面降温,南半球海面升温.这种海面温度变化... 本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带(ITCZ)的影响.我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性.与目前真实情况相比,移除青藏高原会导致北半球海面降温,南半球海面升温.这种海面温度变化在大西洋表现得尤为明显,导致热带大西洋最大海温中心向南移动,从而迫使大气对流中心向南移动,即表现为ITCZ的南移.相应地,夏季热带大气Hadley环流的上升支也发生明显南移.北(南)半球海洋变冷(变暖)这种态势要求增强跨赤道向北的大气经向热量输送,从而维持各个半球的能量平衡,而这需要ITCZ位置的南移才能实现.本文研究表明,青藏高原的存在在现今ITCZ气候态的形成中可能扮演了重要角色. 展开更多
关键词 青藏高原 热带辐合带 耦合地球气候模式 HADLEY环流 热量输送
在线阅读 下载PDF
Global warming projections using the human–earth system model BNU-HESM1.0 被引量:8
10
作者 Shili Yang Wenjie Dong +8 位作者 Jieming Chou Jinming Feng Zhigang Wei Yan Guo Xiaohang Wen Ting Wei Di Tian Xian Zhu Zhiyong Yang 《Science Bulletin》 SCIE EI CAS CSCD 2016年第23期1833-1838,共6页
Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction ... Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed. 展开更多
关键词 Coupled earth system model Globalchange Climate projection Economic dimension
原文传递
Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution 被引量:6
11
作者 SONG Xiang WANG Dan-Yun +1 位作者 LI Fang ZENG Xiao-Dong 《Advances in Climate Change Research》 SCIE CSCD 2021年第4期584-595,共12页
Evaluation of vegetation structure and distribution simulations in Earth system models(ESMs)is the basis for understanding historical reconstruction and future projection of changes in terrestrial ecosystems,carbon cy... Evaluation of vegetation structure and distribution simulations in Earth system models(ESMs)is the basis for understanding historical reconstruction and future projection of changes in terrestrial ecosystems,carbon cycle,and climate based on these ESMs.Such assessments can also provide important information of models'merits and shortcomings or systematic biases,and so clues for model development.Vegetation structure and distribution in ESMs are primarily characterized by three variables:leaf area index(LAI),tree height,and fractional coverage of plant functional type(PFT).However,for the ongoing Coupled Model Intercomparison Project Phase 6(CMIP6),only temporal variabilities of global-averaged LAI time series were evaluated,others remain largely uninvestigated.This study systematically investigates the spatial and/or temporal variability of the three critical variables from 27 ESMs in CMIP6 using satellite observations.Our results show that all models and the multi-model ensemble mean(MME)can generally reproduce the observed LAI spatial pattern but all of them overestimate the global mean LAI mainly due to overestimation of LAI in non-forested vegetated areas.Most CMIP6 models fail to capture the temporal variability in the annual LAI because of large biases in both the simulated trend magnitude and temporal pattern of interannual variability.The average LAI seasonal cycles in different latitude zones are roughly reproduced by the models,but 1-2 months delays in the LAI peak appear in the Arctic-boreal zone.Additionally,CMIP6 models overall overestimate tree height,and largely overestimate the global grass area but underestimate tree and shrub areas,especially in the middle and high latitudes.It should be kept in mind that such biases may have further impacts on the simulations of the related carbon and land-atmosphere interaction variables(e.g.,ecosystem production,carbon storage,transpiration,and temperature)for global change research.Hence,bias-correction should be made to improve reliability of vegetation structure and distribution when future projections and historical reconstructions.They also underscore the urgent need in development and parameterization of dynamic vegetation within Earth system models,such as phenology,allocation,and morphology schemes. 展开更多
关键词 earth system model CMIP6 Leaf area index Vegetation distribution Tree height
原文传递
Evaluation of CMIP5 Earth System Models in Reproducing Leaf Area Index and Vegetation Cover over the Tibetan Plateau 被引量:8
12
作者 鲍艳 高艳红 +9 位作者 吕世华 王青霞 张少波 许建伟 李瑞青 李锁锁 马迪 孟宪红 陈昊 常燕 《Journal of Meteorological Research》 SCIE 2014年第6期1041-1060,共20页
The abilities of 12 earth system models(ESMs) from the Coupled Model Intercomparison Project Phase5(CMIP5) to reproduce satellite-derived vegetation biological variables over the Tibetan Plateau(TP) were examine... The abilities of 12 earth system models(ESMs) from the Coupled Model Intercomparison Project Phase5(CMIP5) to reproduce satellite-derived vegetation biological variables over the Tibetan Plateau(TP) were examined.The results show that most of the models tend to overestimate the observed leaf area index(LAI)and vegetation carbon above the ground,with the possible reasons being overestimation of photosynthesis and precipitation.The model simulations show a consistent increasing trend with observed LAI over most of the TP during the reference period of 1986-2005,while they fail to reproduce the downward trend around the headstream of the Yellow River shown in the observation due to their coarse resolutions.Three of the models:CCSM4,CESM1-BGC,and NorESM1-ME,which share the same vegetation model,show some common strengths and weaknesses in their simulations according to our analysis.The model ensemble indicates a reasonable spatial distribution but overestimated land coverage,with a significant decreasing trend(-1.48%per decade) for tree coverage and a slight increasing trend(0.58%per decade) for bare ground during the period 1950-2005.No significant sign of variation is found for grass.To quantify the relative performance of the models in representing the observed mean state,seasonal cycle,and interannual variability,a model ranking method was performed with respect to simulated LAI.INMCM4,bcc-csm-1.1m,MPI-ESM-LR,IPSL CM5A-LR,HadGEM2-ES,and CCSM4 were ranked as the best six models in reproducing vegetation dynamics among the 12 models. 展开更多
关键词 Coupled model Intercomparison Project Phase 5(CMIP5) vegetation cover earth system model(ESM) dynamic global vegetation model(DGVM) Tibetan Plateau
原文传递
Development of Climate and Earth System Models in China: Past Achievements and New CMIP6 Results 被引量:19
13
作者 Tianjun ZHOU Ziming CHEN +21 位作者 Liwei ZOU Xiaolong CHEN Yongqiang YU Bin WANG Qing BAO Ying BAO Jian CAO Bian HE Shuai HU Lijuan LI Jian LI Yanluan LIN Libin MA Fangli QIAO Xinyao RONG Zhenya SONG Yanli TANG Bo WU Tongwen WU Xiaoge XIN He ZHANG Minghua ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第1期1-19,共19页
The Earth–Climate System Model(ECSM)is an important platform for multi-disciplinary and multi-sphere integration research,and its development is at the frontier of international geosciences,especially in the field of... The Earth–Climate System Model(ECSM)is an important platform for multi-disciplinary and multi-sphere integration research,and its development is at the frontier of international geosciences,especially in the field of global change.The research and development(R&D)of ECSM in China began in the 1980 s and have achieved great progress.In China,ECSMs are now mainly developed at the Chinese Academy of Sciences,ministries,and universities.Following a brief review of the development history of Chinese ECSMs,this paper summarized the technical characteristics of nine Chinese ECSMs participating in the Coupled Model Intercomparison Project Phase 6 and preliminarily assessed the basic performances of four Chinese models in simulating the global climate and the climate in East Asia.The projected changes of global precipitation and surface air temperature and the associated relationship with the equilibrium climate sensitivity under four shared socioeconomic path scenarios were also discussed.Finally,combined with the international situation,from the perspective of further improvement,eight directions were proposed for the future development of Chinese ECSMs. 展开更多
关键词 earth–Climate system model(ECSM) Chinese models Coupled model Intercomparison Project Phase 6(CMIP6) model performance CLIMATE prediction and PROJECTION OUTLOOK
原文传递
A Data Analysis Framework for Earth System Simulation within an <i>In-Situ</i>Infrastructure
14
作者 D. Wang X. Luo +1 位作者 F. Yuan N. Podhorszki 《Journal of Computer and Communications》 2017年第14期76-85,共10页
This paper presents a generic procedure to implement a scalable and high performance data analysis framework for large-scale scientific simulation within an in-situ infrastructure. It demonstrates a unique capability ... This paper presents a generic procedure to implement a scalable and high performance data analysis framework for large-scale scientific simulation within an in-situ infrastructure. It demonstrates a unique capability for global Earth system simulations using advanced computing technologies (i.e., automated code analysis and instrumentation), in-situ infrastructure (i.e., ADIOS) and big data analysis engines (i.e., SciKit-learn). This paper also includes a useful case that analyzes a globe Earth System simulations with the integration of scalable in-situ infrastructure and advanced data processing package. The in-situ data analysis framework can provides new insights on scientific discoveries in multiscale modeling paradigms. 展开更多
关键词 IN-SITU DATA ANALYSIS Source Code ANALYSIS DATA STAGING ADIOS earth system model Machine Learning SciKit-Learn E3SM
在线阅读 下载PDF
中高层大气环境变异及天气气候致灾效应——重大项目简介及最新进展
15
作者 田文寿 卞建春 +7 位作者 陆高鹏 肖子牛 尹志聪 黄金龙 胡定珠 周放 张重阳 宋晓蕾 《大气科学学报》 北大核心 2025年第1期8-25,共18页
中高层大气因其对天气气候的显著影响而被列为世界天气气候研究计划前沿科学研究领域。同时,作为航空到航天的过渡空间,中高层大气被视为国防安全的“高边疆”。然而,由于观测数据不足以及缺乏完备的中高层大气模式,我国对中高层大气环... 中高层大气因其对天气气候的显著影响而被列为世界天气气候研究计划前沿科学研究领域。同时,作为航空到航天的过渡空间,中高层大气被视为国防安全的“高边疆”。然而,由于观测数据不足以及缺乏完备的中高层大气模式,我国对中高层大气环境变异及其天气气候致灾效应的认识还很薄弱。为了加深对中高层大气的认识,国家自然科学基金委资助了重大研究项目“中高层大气环境变异及天气气候致灾效应”,该项目旨在:1)发展中高层大气成分观测的新技术和方法,开展“天空地”一体化多要素协同观测,获取中高层大气的多时空尺度观测资料;2)研究跨大气层相互作用和多源扰动对中高层大气的影响,量化外部强迫因子和内部变率对中高层大气变异的影响及贡献;3)完善模式的中高层大气物理化学过程,发展中高层大气资料同化系统;4)揭示中高层大气环境变异对东亚极端天气气候的影响和机制,评估其致灾效应和风险。该研究将为防灾减灾、气候变化应对以及国防安全保障提供重要的科技支撑和决策依据。本文简要介绍了该项目的研究背景和内容、关键科学问题及最新研究进展。 展开更多
关键词 中高层大气 协同观测数据同化 化学-辐射-动力反馈 地球系统模式 极端天气气候事件
在线阅读 下载PDF
地球系统数值模拟研究进展与科学前沿
16
作者 朱佳雷 董建志 +9 位作者 张永根 孙少波 姜哲 周浩然 赵曦 李攀 陈伟 王礼春 李新 刘丛强 《地学前缘》 北大核心 2025年第3期118-136,共19页
地球系统模式是理解和预测全球变化的核心工具,近年来取得了显著进展。其性能提升体现在圈层耦合过程的精细化发展,以及圈层内复杂物理和化学过程的逐步引入。不确定性的降低则得益于新方法和新技术的发展和应用。然而,地球系统模式仍... 地球系统模式是理解和预测全球变化的核心工具,近年来取得了显著进展。其性能提升体现在圈层耦合过程的精细化发展,以及圈层内复杂物理和化学过程的逐步引入。不确定性的降低则得益于新方法和新技术的发展和应用。然而,地球系统模式仍面临诸多挑战,包括对复杂交互过程的表征能力不足、社会-生态系统过程模拟的局限性,以及区域极端事件模拟能力的提升需求。未来的发展需深化跨学科协作,借助新技术强化数据获取与模型预测能力,同时聚焦社会-生态系统过程及其影响机制的研究,以增强对区域极端事件的模拟与预测能力,构建完善的陆-海-气-人相互耦合的新一代地球系统模式,为人类社会的可持续发展及全球变化的应对和预测提供更科学的支撑。 展开更多
关键词 地球系统模式 发展历程 研究进展 不足与挑战 陆-海-气-人耦合
在线阅读 下载PDF
地-气界面科学与全球变化研究
17
作者 傅平青 胡伟 +8 位作者 赵曦 徐占杰 丁士元 吴礼彬 邓君俊 姜哲 李晓东 朱佳雷 刘丛强 《地学前缘》 北大核心 2025年第3期92-104,共13页
随着全球变化加剧,地-气界面作为地球系统中关键的物质与能量交换界面,成为理解气候变化、生态演变以及地球系统反馈机制的重要窗口。地-气界面过程涉及大气与陆地、海洋之间的能量与物质交换,是陆地和海洋生态系统动态变化的核心,直接... 随着全球变化加剧,地-气界面作为地球系统中关键的物质与能量交换界面,成为理解气候变化、生态演变以及地球系统反馈机制的重要窗口。地-气界面过程涉及大气与陆地、海洋之间的能量与物质交换,是陆地和海洋生态系统动态变化的核心,直接影响地球系统的演变。地-气界面科学研究对于深入理解地球系统的动力学过程至关重要,是地球系统科学中的重要前沿问题之一。本文首先概述了地球系统科学视角下的地-气界面科学研究,总结了地球系统结构中的地-气界面及其作用,以及地-气界面物质与能量交换过程与全球变化的关系。其次,综述了地-气界面过程对大气环境的影响,地-气界面过程对生态系统的碳、氮等元素循环、水循环及其功能服务的影响,以及陆-海-气系统作用与全球气候变化。最后,提出了地-气界面科学研究的前沿与挑战,包括建设地-气界面科学的多尺度跨学科研究体系,如天-地-空立体观测系统优化、地-气界面过程的模式研究与多尺度耦合机制、人工智能时代的地-气界面科学研究等,极地、高山和滨海等生态和气候敏感区的地-气界面过程及影响等。地-气界面科学研究将在气候变化应对、生态环境保护和可持续发展等领域发挥更加重要的作用。 展开更多
关键词 地-气界面 全球变化 生物地球化学循环 地球系统模式 陆-海-气相互作用
在线阅读 下载PDF
A Brief Introduction to BNU-HESM1.0 and Its Earth Surface Temperature Simulations 被引量:13
18
作者 YANG Shili DONG Wenjie +7 位作者 CHOU Jieming FENG Jinming YAN Xiaodong WEI Zhigang YUAN Wenping GUO Yan TANG Yanli HU Jiacong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1683-1688,共6页
Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human--earth system... Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system. In this paper, a new human--earth system model, BNU- HESM1.0, constructed by combining the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model, is introduced. The ability of BNU-HESM1.0 in simulating the global CO2 concentration and surface temperature is also evaluated. We find that, compared to observation, BNU-HESM1.0 underestimates the global CO2 concentration and its rising trend during 1965-2005, due to the uncertainty in the economic components. However, the surface temperature simulated by BNU-HESM1.0 is much closer to observation, resulting from the overestimates of surface temperature by the original BNU-ESM model. The uncertainty of BNU-ESM falls within the range of present earth system uncertainty, so it is the economic and climate damage component of BNU-HESM 1.0 that needs to be improved through further study. However, the main purpose of this paper is to introduce a new approach to investigate the complex relationship between human activity and the earth system. It is hoped that it will inspire further ideas that prove valuable in guiding human activities appropriate for a sustainable future climate. 展开更多
关键词 economic model component earth system model human activity global change
在线阅读 下载PDF
Developed and Developing World Contributions to Climate System Change Based on Carbon Dioxide,Methane and Nitrous Oxide Emissions 被引量:2
19
作者 Ting WEI Wenjie DONG +3 位作者 Qing YAN Jieming CHOU Zhiyong YANG Di TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第5期632-643,共12页
One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formul... One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of "common but differentiated responsibilities". This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model(CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%–61%, and developing countries approximately 39%–47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases(GHGs)in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20 th century. 展开更多
关键词 greenhouse gases earth system model climate change climate modeling
在线阅读 下载PDF
地球动力学数值模拟算法的应用现状与展望
20
作者 魏虹羽 李世超 王伟安 《吉林大学学报(地球科学版)》 北大核心 2025年第1期98-124,共27页
当前,数值模拟技术已成为探究地球动力学过程的重要手段。本文综述了数值模拟在地球动力学研究中的应用现状、主要算法和代码并探讨了发展前景。数值模拟通过对连续方程组进行离散化,并利用数值算法求解,从而高效模拟地质过程,预测地球... 当前,数值模拟技术已成为探究地球动力学过程的重要手段。本文综述了数值模拟在地球动力学研究中的应用现状、主要算法和代码并探讨了发展前景。数值模拟通过对连续方程组进行离散化,并利用数值算法求解,从而高效模拟地质过程,预测地球系统的动态变化。本文系统阐述了有限元法、有限差分法、边界元法和有限体积法等主流数值方法的原理、特点和适用条件;并重点探讨了有限元法在构造应力场和断层动力学模拟中的应用、有限差分法在地震波传播模拟中的应用、边界元法和有限体积法在断层力学和孔隙流体流动模拟中的应用。通过对比分析不同方法的优缺点,揭示了多种数值方法耦合是未来地球动力学数值模拟的重要发展方向;随着高性能计算技术的进步和大数据时代的到来,数值模拟技术将在地球系统科学研究中发挥越来越重要的作用。 展开更多
关键词 数值模拟 地球动力学 地质建模 数值方法 地球系统 有限元法 多物理场耦合模拟
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部