Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amp...Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amplified from pMMB68 by PCR, subcloned into middle vector pUCmT and binary vector pBI121 to obtain plant expression vector pBI-LTB, in which LT-B expression was controlled under the Cauliflower mosaic virus (CaMV) 35S promoter. The tobacco plants (Nicotiana tobacum L. Cuttivar Xanthi) were transformed by co-cultivating leaf discs method via Agrobacterium tumefaciens LBA4404 harboring the plant expression vector. The regenerated transgenic tobacco plants were selected by kanamycin and confirmed by PCR, Southern blot, Western blot and ELISA. Resuits: LT-B gene integrated in the tobacco genomic DNA and were expressed in 9 strains of transgenic tobacco plants. The yield was varied from 3. 36-10. 56 ng/mg total soluble tobacco leaf protein. Conclusion: The plant binary expression vector pBI-LTB was constructed successfully, and transgenic LT-B tobacco plants was generated, and confirmed by Southern blot. The protein LT-B expressed by engineered plants was identified by Western blot analysis and had the expected molecular weight of LT-B pentamer protein. This result is an important step close to developing an edible vaccine and supplying a mucasal immunoajuvant, which will contribute to the preven- tion of mucosaroute evading pathogen.展开更多
Aim: The present study aims to evaluate the occurrence and characterize E. coli in meat and meat products marketed in Egypt based on their antimicrobial-resistance pattern and production of enterotoxins. Methods: A to...Aim: The present study aims to evaluate the occurrence and characterize E. coli in meat and meat products marketed in Egypt based on their antimicrobial-resistance pattern and production of enterotoxins. Methods: A total of 250 meat samples, categorized as 80 fresh beef, 85 ground beef and 85 beef burger purchased from supermarkets and butchers’ shops were used for isolation of E. coli. All isolates were screened for antimicrobial susceptibility. Plasmid profile analyses were done. Polymerase chain reactions were performed for detection of enterotoxin-encoding genes (astA, eaeA, stx1 and stx2). Results: Twenty-five samples were isolated and identified as E. coli. 14 isolates were multidrug resistant. Plasmids isolation from all isolates revealed that 76% of these isolates harbored plasmids. astA gene was amplified in 7 isolates (28%). Eight (32%) isolates harbored eaeA gene. However, none of the isolates harbored stx1 or stx2 genes. Analysis of multiple drug resistant isolates revealed a significant relation between multiple drug resistance and both astA and eaeA. Conclusion: The study confirmed the prevalence of enterotoxin genes (astA and eaeA) in E. coli isolated from meat product and the association between the presence of these genes and multiple drug resistant phenomena.展开更多
In this study,the interaction of exopolysaccharides from Leuconostoc mesenteroides P35(EPS-LM)with Escherichia coli heat-labile enterotoxin B-pentamer(LTB)was investigated at different concentrations and temperatures ...In this study,the interaction of exopolysaccharides from Leuconostoc mesenteroides P35(EPS-LM)with Escherichia coli heat-labile enterotoxin B-pentamer(LTB)was investigated at different concentrations and temperatures by using surface plasmon resonance(SPR)and molecular docking approaches.FT-IR spectral analysis together with HPTLC analysis revealing that glucose is the only constitutive monosaccharide of EPS-LM suggests that its structure is composed of dextran withα-D(1→6)glycosidic linkages.SPR analysis revealed the high affinity of EPS-LM for immobilized LTB toxin(KA=(2.05±0.04)×10^(6) mol.L−1 at 37℃).The binding process was spontaneous(ΔG<0),endothermic(ΔH>0),and entropy-driven(ΔS>0)with an increase of KA with temperature.This suggests that EPS-LM-LTB interaction is dominated by hydrophobic forces.The binding affinity of EPS-LM to LTB had negligible dependence on enthalpy(ΔH=0.084 kJ mol−1).Further,molecular docking results suggested the presence of some binding sites of EPS-LM on the LTB through hydrophobic forces(Lys,Asp,Arg,Glu)and also hydrogen bonding(Glu)in the hydrophobic core of LTB.Besides autodock studies,Schiffer-Edmundson helical wheel diagrams of LTB inα-helix domain suggested that LTB hydrophobic core is a highly effective region,which was able to form favorable non-polar interactions of the protein's binding surface(with amino acids residues such as Tyr,Leu,Ile)with EPS-LM.This study provided thus further insights into the interactions between EPS-LM and LTB,suggesting that EPS produced by some LAB,such as EPS produced by Ln.mesenteroides P35 strain are good candidates to inhibit E.coli toxin activity.展开更多
基金Supported by the National Natural Science Foundation ofChina (No. 30070848)
文摘Objective : To construct plant transformation vector containing Escherichia coli heat-labile enterotoxin B subunit (LT-B) gene and generate LT-B transgenic tobacco plants. Methods: The LT-B coding sequence was amplified from pMMB68 by PCR, subcloned into middle vector pUCmT and binary vector pBI121 to obtain plant expression vector pBI-LTB, in which LT-B expression was controlled under the Cauliflower mosaic virus (CaMV) 35S promoter. The tobacco plants (Nicotiana tobacum L. Cuttivar Xanthi) were transformed by co-cultivating leaf discs method via Agrobacterium tumefaciens LBA4404 harboring the plant expression vector. The regenerated transgenic tobacco plants were selected by kanamycin and confirmed by PCR, Southern blot, Western blot and ELISA. Resuits: LT-B gene integrated in the tobacco genomic DNA and were expressed in 9 strains of transgenic tobacco plants. The yield was varied from 3. 36-10. 56 ng/mg total soluble tobacco leaf protein. Conclusion: The plant binary expression vector pBI-LTB was constructed successfully, and transgenic LT-B tobacco plants was generated, and confirmed by Southern blot. The protein LT-B expressed by engineered plants was identified by Western blot analysis and had the expected molecular weight of LT-B pentamer protein. This result is an important step close to developing an edible vaccine and supplying a mucasal immunoajuvant, which will contribute to the preven- tion of mucosaroute evading pathogen.
文摘Aim: The present study aims to evaluate the occurrence and characterize E. coli in meat and meat products marketed in Egypt based on their antimicrobial-resistance pattern and production of enterotoxins. Methods: A total of 250 meat samples, categorized as 80 fresh beef, 85 ground beef and 85 beef burger purchased from supermarkets and butchers’ shops were used for isolation of E. coli. All isolates were screened for antimicrobial susceptibility. Plasmid profile analyses were done. Polymerase chain reactions were performed for detection of enterotoxin-encoding genes (astA, eaeA, stx1 and stx2). Results: Twenty-five samples were isolated and identified as E. coli. 14 isolates were multidrug resistant. Plasmids isolation from all isolates revealed that 76% of these isolates harbored plasmids. astA gene was amplified in 7 isolates (28%). Eight (32%) isolates harbored eaeA gene. However, none of the isolates harbored stx1 or stx2 genes. Analysis of multiple drug resistant isolates revealed a significant relation between multiple drug resistance and both astA and eaeA. Conclusion: The study confirmed the prevalence of enterotoxin genes (astA and eaeA) in E. coli isolated from meat product and the association between the presence of these genes and multiple drug resistant phenomena.
基金the Minist`ere des Affaires Etrang`eres(France)and the Ministry of Research,Science and Technology(Iran)for financing double PhD scholarship joint-supervision program between France and Iran for Mojtaba AZARI-ANPARThe authors are indebted to Conseil D´epartemental de l’Ain and Bourg en Bresse Agglom´eration for the financial support of BioDyMIA research unit activities.
文摘In this study,the interaction of exopolysaccharides from Leuconostoc mesenteroides P35(EPS-LM)with Escherichia coli heat-labile enterotoxin B-pentamer(LTB)was investigated at different concentrations and temperatures by using surface plasmon resonance(SPR)and molecular docking approaches.FT-IR spectral analysis together with HPTLC analysis revealing that glucose is the only constitutive monosaccharide of EPS-LM suggests that its structure is composed of dextran withα-D(1→6)glycosidic linkages.SPR analysis revealed the high affinity of EPS-LM for immobilized LTB toxin(KA=(2.05±0.04)×10^(6) mol.L−1 at 37℃).The binding process was spontaneous(ΔG<0),endothermic(ΔH>0),and entropy-driven(ΔS>0)with an increase of KA with temperature.This suggests that EPS-LM-LTB interaction is dominated by hydrophobic forces.The binding affinity of EPS-LM to LTB had negligible dependence on enthalpy(ΔH=0.084 kJ mol−1).Further,molecular docking results suggested the presence of some binding sites of EPS-LM on the LTB through hydrophobic forces(Lys,Asp,Arg,Glu)and also hydrogen bonding(Glu)in the hydrophobic core of LTB.Besides autodock studies,Schiffer-Edmundson helical wheel diagrams of LTB inα-helix domain suggested that LTB hydrophobic core is a highly effective region,which was able to form favorable non-polar interactions of the protein's binding surface(with amino acids residues such as Tyr,Leu,Ile)with EPS-LM.This study provided thus further insights into the interactions between EPS-LM and LTB,suggesting that EPS produced by some LAB,such as EPS produced by Ln.mesenteroides P35 strain are good candidates to inhibit E.coli toxin activity.