期刊文献+
共找到611篇文章
< 1 2 31 >
每页显示 20 50 100
基于Dual-Tree CWT和自适应双边滤波器的图像去噪算法 被引量:14
1
作者 崔金鸽 陈炳权 徐庆 《计算机工程与应用》 CSCD 北大核心 2018年第18期223-228,共6页
针对目前图像去噪方法主要局限于单一噪声,无法有效解决多种混合噪声的不足,提出了一种基于DualTree CWT和自适应双边滤波器的图像去噪算法。该算法使用双树复小波变换对含噪图像进行多尺度和多方向的分解,由改进阈值对各个方向子带的... 针对目前图像去噪方法主要局限于单一噪声,无法有效解决多种混合噪声的不足,提出了一种基于DualTree CWT和自适应双边滤波器的图像去噪算法。该算法使用双树复小波变换对含噪图像进行多尺度和多方向的分解,由改进阈值对各个方向子带的高频系数进行阈值量化,同时由自适应双边滤波对每尺度下低频子带系数进行滤波,并将重构得到的图像进一步去除噪声。实验仿真结果表明,该方法对混合噪声的滤除效果明显优于现有算法,且能较好地保护图像的边缘细节信息,通过客观评价指标峰值信噪比(PSNR)和均方根误差(RMSE)定量比较,PSNR提升了5.333 2~6.527 8 d B,RMSE可降低29.41%~46.03%,运行时间仅为1.492 0 s,整体降噪性能更优。 展开更多
关键词 图像去噪 混合噪声 双树复小波变换 自适应双边滤波器 改进阈值
在线阅读 下载PDF
EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms 被引量:4
2
作者 Itaf Ben Slimen Larbi Boubchir +1 位作者 Zouhair Mbarki Hassene Seddik 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期151-161,共11页
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective... The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods. 展开更多
关键词 ELECTROENCEPHALOGRAPHY epileptic seizure detection feature extraction dual-tree complex wavelet transform machine learning
在线阅读 下载PDF
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
3
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(DT-CWT)
在线阅读 下载PDF
Seismic signal analysis based on the dual-tree complex wavelet packet transform
4
作者 XIE Zhou-min(谢周敏) WANG En-fu(王恩福) +2 位作者 ZHANG Guo-hong(张国宏) ZHAO Guo-cun(赵国存) CHEN Xu-geng(陈旭庚) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第z1期117-122,共6页
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin... We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase. 展开更多
关键词 dual-tree complex wavelet packet transform instantaneous characteristics seismicsignalanalysis
在线阅读 下载PDF
Image inpainting using complex 2-D dual-tree wavelet transform
5
作者 YANG Jian-bin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第1期70-76,共7页
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr... The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm. 展开更多
关键词 Image inpainting dual-tree complex wavelet transform wavelet shrinkage method.
在线阅读 下载PDF
Defects Recognition of 3D Braided Composite Based on Dual-Tree Complex Wavelet Packet Transform
6
作者 贺晓丽 王瑞 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期749-752,共4页
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a... Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites. 展开更多
关键词 3D braided composite dual-tree complex wavelet packet transform(DT-CWPT) ultrasonic wave
在线阅读 下载PDF
Multi-scale separation of aeromagnetic abnormality based on dual-tree complex wavelet
7
作者 GONG Mingxu ZENG Zhaofa +1 位作者 ZHANG Jianmin JIANG Dandan 《Global Geology》 2021年第1期49-57,共9页
Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale sepa... Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale separation to the processing of bit-field data firstly and uses the geological model of different buried depth to ve-rify its feasibility.Finally,the dual-tree complex wavelet is applied to the aeromagnetic anomaly in Jinchuan copper nickel mining area.The results show that the method can effectively separate the anomaly information of different scales and analyze the output results with relevant geological data. 展开更多
关键词 aeromagnetic abnormality multi-scale separation bit-field separation dual-tree complex wavelet Jinchuan
在线阅读 下载PDF
Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform 被引量:11
8
作者 YANG Mao-xiang TANG Gui-jin +3 位作者 LIU Xiao-hua WANG Li-qian CUI Zi-guan LUO Su-huai 《Optoelectronics Letters》 EI 2018年第6期470-475,共6页
In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts ... In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction. 展开更多
关键词 RETINEX theory dual-tree complex WAVELET TRANSFORM IMAGE ENHANCEMENT
原文传递
A Dual-Tree Complex Wavelet Transform-Based Model for Low-Illumination Image Enhancement 被引量:1
9
作者 GUAN Yurong Muhammad Aamir +4 位作者 Ziaur Rahman Zaheer Ahmed Dayo Waheed Ahmed Abro Muhammad Ishfaq HU Zhihua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第5期405-414,共10页
Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a techniqu... Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general. 展开更多
关键词 image enhancement dual-tree complex wavelet transform(DT-CWT) anisotropic diffusion low-light images
原文传递
基于强化双树复小波包变换的风电机组偏航轴承损伤识别
10
作者 王晓龙 金韩微 +3 位作者 张博文 石海超 杨秀彬 何玉灵 《动力工程学报》 北大核心 2025年第1期115-123,共9页
针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进... 针对风电机组偏航轴承损伤识别问题,提出了基于强化双树复小波包变换的损伤识别方法。首先,通过双树复小波包变换与线性峭度结合对不同分解层数下的分量计算平均线性峭度值,确定最优分解层数;其次,对最优分解所得小波系数及尺度系数进行幅值调制,进而增强不同信号成分的能量;然后,采用散布熵指标确定各分量最佳调制系数并通过双树复小波包逆变换得到修正信号;最后,对修正信号作归一化平方包络谱分析提取故障特征频率。结果表明:所提方法能够实现复杂工况下偏航轴承损伤类型的准确识别,具有一定工程参考价值。 展开更多
关键词 风电机组 偏航轴承 双树复小波包变换 谱幅值调制
在线阅读 下载PDF
基于双树复小波变换与稀疏表示的牙隐裂OCT三维图像融合
11
作者 石博雅 董潇阳 《天津工业大学学报》 北大核心 2025年第1期62-68,共7页
针对采用光学相干层析(OCT)技术进行体积较大的前磨牙和磨牙的隐裂检测时,仅从单一扫描视角采集可能存在误检或漏检的问题,提出一种双树复小波变换(DTCWT)与稀疏表示(SR)相结合的牙隐裂三维图像融合方法。利用扫频OCT对人工牙隐裂模型从... 针对采用光学相干层析(OCT)技术进行体积较大的前磨牙和磨牙的隐裂检测时,仅从单一扫描视角采集可能存在误检或漏检的问题,提出一种双树复小波变换(DTCWT)与稀疏表示(SR)相结合的牙隐裂三维图像融合方法。利用扫频OCT对人工牙隐裂模型从2个扫描视角进行成像,经过三维图像配准后,利用双树复小波变换对图像进行分解。对于低频子带进行稀疏表示,采用“最大L1范数”规则进行融合,高频子带采用“绝对最大”规则融合,最后通过DTCWT重构得到融合后的图像。实验结果表明:采用本文方法融合后的牙隐裂图像可以得到裂纹的完整信息,获得准确的定位和分级,各方面性能均优于单独采用各多尺度分解方法和稀疏表示方法,标准差(SD)、平均梯度(AG)、空间频率(SF)和边缘信息评价因子(Q)的值分别平均提高到36.7、6.0、27.9和0.74,有效提高了OCT牙隐裂检测的准确性。 展开更多
关键词 牙隐裂 光学相干层析 稀疏表示 双树复小波变换
在线阅读 下载PDF
电力线和无线双模信道路由算法的研究
12
作者 潘晓冬 马胜国 +2 位作者 魏本海 罗冬坤 方琦 《长江信息通信》 2025年第1期13-15,共3页
随着智能电网和物联网技术的发展,有线与无线通信的融合有效提升网络覆盖率、稳定性和通信效率。文章探讨了树形网络中电力线与无线双模信道路由算法,旨在解决单一通信模式下的局限性问题,尤其是在复杂、动态变化的树形网络环境中提供... 随着智能电网和物联网技术的发展,有线与无线通信的融合有效提升网络覆盖率、稳定性和通信效率。文章探讨了树形网络中电力线与无线双模信道路由算法,旨在解决单一通信模式下的局限性问题,尤其是在复杂、动态变化的树形网络环境中提供高可靠、高效率的数据传输服务。通过电力线信道和无线信道周期性的发送发现列表,用于站点间获取和更新邻居站点信息,以此识别直接路由关系、单跳代理关系;通过组网报文形成多跳间接路由关系,构建两种通信模式多条路径路由;通过代理变更请求,动态维护路由,应对动态变化的网络环境。 展开更多
关键词 电力线通信 无线通信 双模融合 路由算法 发现列表 树形网络
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
13
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
基于定子电流和电磁转矩双信号融合的齿轮故障智能诊断
14
作者 李巍 袁响东 +1 位作者 陈伟 刘军 《电气工程学报》 CSCD 北大核心 2024年第3期248-256,共9页
在电机驱动的齿轮传动系统中,电机本体具有传感器的特性,因此可以通过电机的定子电流、电磁转矩信号来进行齿轮故障分析,由于受转速和负载转矩的影响,使得故障诊断结果的准确率较低。针对此问题,提出一种基于双信号融合与反向传播神经... 在电机驱动的齿轮传动系统中,电机本体具有传感器的特性,因此可以通过电机的定子电流、电磁转矩信号来进行齿轮故障分析,由于受转速和负载转矩的影响,使得故障诊断结果的准确率较低。针对此问题,提出一种基于双信号融合与反向传播神经网络相结合的齿轮故障诊断方法。对电机齿轮传动系统一体化建模,进行电机齿轮传动系统联合仿真。对齿轮的不同故障进行模拟,得到电机侧定子电流和电磁转矩的故障信号,采用双树复小波变换来分析齿轮故障频段信号,提取故障特征量,建立了丰富的齿轮故障样本库。搭建反向传播神经网络并提出改进的自适应学习率算法,实现了对齿轮断齿、磨损故障的精确分类。为了验证所提方法的有效性,搭建齿轮故障试验平台,对相应齿轮故障进行诊断。结果表明,所提方法能够在不同转速和负载转矩条件下准确辨识齿轮的故障类型,相较于只采用定子电流和电磁转矩中一种信号对齿轮进行故障诊断,该方法准确率更高。 展开更多
关键词 齿轮故障 传动系统 神经网络 双树复小波变换 智能诊断
在线阅读 下载PDF
基于改进RRT算法的双臂服务机器人运动规划研究
15
作者 郭俊锋 袁俊平 朱红霞 《仪器仪表学报》 CSCD 北大核心 2024年第12期210-220,共11页
针对双臂服务机器人末端导航效率、实时性、鲁棒性以及路径全局最优等问题,提出了一种基于改进快速随机探索树算法的双臂服务机器人末端路径规划方法。该方法利用两棵随机树父节点连线随机采样,结合目标偏差角和随机值来改变固定步长搜... 针对双臂服务机器人末端导航效率、实时性、鲁棒性以及路径全局最优等问题,提出了一种基于改进快速随机探索树算法的双臂服务机器人末端路径规划方法。该方法利用两棵随机树父节点连线随机采样,结合目标偏差角和随机值来改变固定步长搜索策略,并引入人工势场法对随机采样进行局部优化,有效平衡原始算法的随机性和盲目性,从而提高路径质量并缩短规划时间。之后去除路径冗余点并采用3次B样条曲线平滑路径,优化双臂末端运动,减少抖动。采用主从规划法,先进行主臂的避障规划,从臂再依据主臂路径规划避障和避碰路径。通过MATLAB仿真和真实实验平台验证了该算法在复杂度相同环境下的迭代次数、规划时间和最终路径长度方面均优于传统RRT及其他改进算法,显著提升了双臂服务机器人的路径规划效率和质量。 展开更多
关键词 快速随机探索树 双臂服务机器人 主从规划 路径规划
在线阅读 下载PDF
双树复小波变换下的数字图像鲁棒性水印方法
16
作者 张琳钦 《常州工学院学报》 2024年第5期52-59,共8页
为提高数字图像的峰值信噪比,提出基于双树复小波变换的数字图像鲁棒性水印方法。利用双树复小波变换对原始输入图像进行分解,结合小波函数与图像重构条件,降低输出信息的冗余度,并通过计算各子图的高频变量,确定水印嵌入位置,以此为依... 为提高数字图像的峰值信噪比,提出基于双树复小波变换的数字图像鲁棒性水印方法。利用双树复小波变换对原始输入图像进行分解,结合小波函数与图像重构条件,降低输出信息的冗余度,并通过计算各子图的高频变量,确定水印嵌入位置,以此为依据,根据嵌入强度因子与水印嵌入密钥实现水印的嵌入,通过图像水印序列的解扩与反置乱操作,对图像水印进行提取,继而完成水印的嵌入与提取过程。实验结果表明,所提方法的峰值信噪比较高,具有良好的鲁棒性。 展开更多
关键词 双树复小波变换 数字图像 鲁棒性 水印方法
在线阅读 下载PDF
机器人锅炉冷态空气动力场测量系统开发 被引量:1
17
作者 寇梦楠 刘海玉 +2 位作者 牛俊天 金燕 吴杨 《动力工程学报》 CAS CSCD 北大核心 2024年第2期284-291,300,共9页
针对锅炉冷态空气动力场试验自动化程度低、操作危险性大的问题,开发了机器人锅炉冷态空气动力场试验测量系统。系统下位机采用STM32芯片作为主控芯片,控制爬壁机器人的运动以及与上位机的信息交换,同时引入混沌线性惯性权重对粒子群优... 针对锅炉冷态空气动力场试验自动化程度低、操作危险性大的问题,开发了机器人锅炉冷态空气动力场试验测量系统。系统下位机采用STM32芯片作为主控芯片,控制爬壁机器人的运动以及与上位机的信息交换,同时引入混沌线性惯性权重对粒子群优化模糊PID算法进行优化,并将改进后的算法作为机器人运动路径的控制策略,对于机械臂的控制引入D-H法。上位机为LabVIEW搭建的操作平台,通过嵌入双树复小波变换去噪算法,对采集到的风速信号进行降噪处理。结果表明:所提出的系统各个模块均可正常且稳定运行,与人工测试的误差保持在±10%,能够满足锅炉冷态试验的要求。 展开更多
关键词 锅炉 机器人 STM32 LabVIEW 改进粒子群优化模糊PID D-H法 双树复小波变换
在线阅读 下载PDF
用于低剂量CT图像去噪的多级双树复小波网络
18
作者 张鲁 田春伟 +1 位作者 宋焕生 刘侍刚 《计算机工程》 CAS CSCD 北大核心 2024年第9期266-275,共10页
基于卷积神经网络(CNN)的图像去噪方法能有效去除低剂量计算机断层扫描(CT)图像伴随的伪影和噪声,从而确保CT设备输出高质量图像同时降低辐射,这对患者健康和医学诊断具有重要意义。为了进一步提高低剂量CT图像的质量,提出一种小波域去... 基于卷积神经网络(CNN)的图像去噪方法能有效去除低剂量计算机断层扫描(CT)图像伴随的伪影和噪声,从而确保CT设备输出高质量图像同时降低辐射,这对患者健康和医学诊断具有重要意义。为了进一步提高低剂量CT图像的质量,提出一种小波域去噪网络MDTNet。首先,基于双树复小波变换(DTCWT)构造多级编解码去噪网络,在多个尺度上提取特征以保留更多高频细节;然后,利用扩展的像素重排技术替代卷积上下采样,实现多级输入和特征融合,从而降低计算复杂度;最后,通过大量训练找到最佳的去噪模型,即二级MDTNet配合LeGall滤波器和Qshift_b滤波器,并选择较大尺寸的CT图像作为训练数据。使用AAPM数据集评估MDTNet的性能,实验结果表明,MDTNet能有效去除条纹状伪影和噪声,在定量和定性评估中性能均优于同类型去噪方法。与FWDNet相比,对于1 mm的切片,MDTNet的平均峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了0.0887 dB和0.0024;对于3 mm的切片,分别提升了0.1443 dB和0.003。对于单张512×512像素的低剂量CT图像去噪,MDTNet在GPU上仅需0.193 s。MDTNet在保持高效率的同时保留了更多的高频细节,能够为低剂量CT图像去噪提供一种新的框架。 展开更多
关键词 低剂量CT图像 图像去噪 卷积神经网络 双树复小波变换 像素重排
在线阅读 下载PDF
基于光响应非均匀性的WhatsApp压缩视频来源识别
19
作者 陈懿辉 田妮莉 +1 位作者 潘晴 苏开清 《应用光学》 CAS 北大核心 2024年第2期337-345,共9页
光响应非均匀噪声(photo response nonuniformity,PRNU)是光学成像传感器成像时引入的一种独特噪声,可有效识别压缩视频的来源。针对现有算法提取压缩视频的PRNU效果并不显著的问题,论文提出了一种改进PRNU提取算法。首先,去除视频编解... 光响应非均匀噪声(photo response nonuniformity,PRNU)是光学成像传感器成像时引入的一种独特噪声,可有效识别压缩视频的来源。针对现有算法提取压缩视频的PRNU效果并不显著的问题,论文提出了一种改进PRNU提取算法。首先,去除视频编解码的环路滤波器,对视频帧使用双密度双树复小波变换进行分解;然后对高频子带使用基于贝叶斯阈值估计的双变量收缩算法进行估计,再使用自适应加窗维纳滤波进行二次估计,得到噪声残差;最后用基于量化参数值加权的最大似然估计法聚合噪声残差,再与视频帧估计得到PRNU。实验结果表明:该文提出的方法在20 s时WhatsApp视频的识别率为75%。 展开更多
关键词 光响应非均匀性 源相机识别 压缩视频 双密度双树复小波变换 双变量收缩
在线阅读 下载PDF
基于多尺度邻域收缩和结构滤波的加权PRNU模型
20
作者 罗芷茵 田妮莉 +1 位作者 潘晴 苏开清 《激光杂志》 CAS 北大核心 2024年第9期79-84,共6页
光响应非均匀性(Photo-Response Non-Uniformity,PRNU)是一种反映成像传感器缺陷的固有特征,可有效识别拍摄该数字视频的相机来源。针对网络压缩视频识别效果不佳的问题,提出一种基于Stein’s无偏风险估计的多尺度邻域值收缩滤波和自适... 光响应非均匀性(Photo-Response Non-Uniformity,PRNU)是一种反映成像传感器缺陷的固有特征,可有效识别拍摄该数字视频的相机来源。针对网络压缩视频识别效果不佳的问题,提出一种基于Stein’s无偏风险估计的多尺度邻域值收缩滤波和自适应边缘结构保持的平滑滤波算法,并构建一个加权PRNU提取模型。该模型首先对跳过环路滤波的视频帧进行基于双树复小波的多尺度变换,使用基于Stein’s无偏风险估计的多尺度邻域值收缩滤波算法估计所有高频子带,得到噪声残差后,利用自适应边缘结构保持平滑滤波对复杂的噪声残差进行平滑处理,采用基于量化参数加权的最大似然估计方法聚合噪声残差得到PRNU的乘性因子,最后经过预处理得到PRNU。在Vision数据集上的实验结果显示,所提出的模型在视频时长为15 s时,移动和旋转参考指纹下的AUC值分别为0.9551和0.9549,Kappa系数分别为0.8403,0.8889和0.9132,均优于现有算法。 展开更多
关键词 光响应非均匀性 源相机识别 双树复小波 多尺度邻域收缩 边缘结构保持滤波
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部