BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and ...BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kina...Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.展开更多
Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy ...Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy (DAPT) has been indicated in this group, however, DAPT significantly increases the risk of bleeding. Objectives: This study aimed to evaluate aspirin versus clopidogrel and aspirin on major adverse cardiac and cerebrovascular events (MACCE) and risk of bleeding in individuals already on DAPT for one year after undergoing PCI. Methods: This was a single-center, double-arm, interventional, prospective study. A total of 956 individuals who had undergone PCI and were on DAPT for a year were enrolled. After calculating DAPT scores, individuals with DAPT scores ≥2 were assigned to the aspirin and clopidogrel group, and those with DAPT scores Results: The group on clopidogrel and aspirin demonstrated a significantly lower rate of MACCE when compared to those on aspirin alone (p = 0.003). However, stent thrombosis, stroke, and myocardial infarction (MI) did not significantly differ in an inter-group comparison. The rate of moderate bleeding was greater in the clopidogrel group;however, the difference was not found to be statistically significant (p = 0.19). Conclusions: Continuing DAPT for a period between 12 and 24 months after PCI in individuals with a DAPT score ≥2 had favorable outcomes in reducing coronary adverse events without resulting in significant bleeding.展开更多
The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas sh...The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.展开更多
BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to ...BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to complications such as Bar-rett’s esophagus and esophagitis.Conventional proton pump inhibitors(PPIs)often fail to reduce nocturnal acid production,leaving patients with unresolved symptoms that worsen at night and decreased satisfaction.Happi ER,a novel dual delayed-release(DDR)formulation of rabeprazole,aims to address these limitations by providing both immediate and prolonged acid suppression.AIM To evaluate the safety and effectiveness of rabeprazole DDR 20 mg capsule in patients with GERD.METHODS This study involved a multicenter,real-world,prospective,observational design over an eight-week period.A total of 1022 GERD patients were treated with rabeprazole DDR 20 mg capsules(Happi ER),as prescribed by their physicians.We included adult patients with confirmed GERD and persistent heartburn symptoms despite prior PPI use.Outcome measures included heartburn severity,frequency of night-time awakenings,use of rescue medications,and overall patient satisfaction.RESULTS Rabeprazole DDR 20 mg capsules(Happi ER)were shown to be highly effective in treating GERD symptoms.At the end of the study,the mean heartburn score improved significantly from 2.46±0.67 at baseline to 0.16±0.39(P<0.0001).The median number of night-time awakenings decreased to 0(P<0.0001).More than 93%of patients rated the therapy as“excellent”or“very good”,reflecting high satisfaction.No significant adverse effects were reported,and the safety profile was comparable to that of traditional PPIs.CONCLUSION By providing both rapid and sustained acid suppression,Happi ER effectively treats GERD,particularly with respect to night-time symptoms.Its safety and efficacy profile make it a viable option for individuals with mild-to-moderate GERD,significantly improving the quality of life and symptom management.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
AIM:To report the one-year surgical outcome Kahook Dual Blade goniotomy combined with phacoemulsification(KDB-Phaco)in Chinese patients with primary open angle glaucoma(POAG).METHODS:This is a retrospective study incl...AIM:To report the one-year surgical outcome Kahook Dual Blade goniotomy combined with phacoemulsification(KDB-Phaco)in Chinese patients with primary open angle glaucoma(POAG).METHODS:This is a retrospective study included 43 eyes of 28 Chinese POAG patients with cataract who accepted KDB-Phaco and followed-up for 12mo.Intraocular pressure(IOP),glaucoma medications and surgical complications were recorded.Success 1 and success 2 was defined as 5-21 mm Hg and 5-18 mm Hg,and success plus was determined if additional criteria of IOP reduction≥20%from baseline was reached.A corrected IOP by adding 3 mm Hg for each medication was used to do correlation test.Cox’s proportional hazards regression model was used to test the hazard ratio for factors associated with surgical success.RESULTS:After a 12-month follow up,the IOP decreased from 28.1±6.3 to 13.8±3.0 mm Hg(47.92%reduction,P<0.001),and the medications used decreased from 2.0(1.0)to 0.0(0.0)(95%reduction,P<0.001).The mean IOP of all postoperative visits were lower than preoperative IOP(all P<0.001),so as the number of glaucoma medications(all P<0.001).Complete success 1 and qualified success 1 were 87.80%and 100.00%respectively.The complete success 1 plus and qualified success 1 plus were 85.37%and 97.56%,respectively.Totally 82.93%and 90.24%of patients got complete success 2 and qualified success 2 while 80.49%and 87.80%of patients satisfied complete success 2 plus and qualified success 2 plus.Age(r=-0.511,P=0.001)and visual acuity(VA;r=-0.321,P=0.041)were negatively correlated with postoperative corrected IOP at 12mo,while anterior chamber depth(r=0.432,P=0.005),mean deviation(r=0.617,P<0.001)and visual field index(r=0.524,P<0.001)were positively correlated with it.Preoperative VA(OR=33.092,P=0.004)and MD(OR=1.481,P=0.018)were hazard factors associated with failure based on qualified success as 18 mm Hg.The main complications of KDB were hyphema(9.30%),IOP spike(11.63%)and peripheral anterior synechia(6.98%).CONCLUSION:KDB goniotomy is a safe and effective in the treatment for Chinese POAG patients.Preoperative VA and mean deviation may predict the surgical success.展开更多
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,...Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challen...Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.展开更多
Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier ...Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.展开更多
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si...The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.展开更多
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2...Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.展开更多
基金Supported by National High Level Hospital Clinical Research Funding(Youth Clinical Research Project of Peking University First Hospital),No.2023YC27Capital’s Funds for Health Improvement and Research,No.2022-2-40711National High Level Hospital Clinical Research Funding(Interdepartmental Research Project of Peking University First Hospital),No.2024IR20.
文摘BACKGROUND A dual therapy regimen containing amoxicillin is a common treatment option for the eradication of Helicobacter pylori(H.pylori).While substantial research supports the efficacy and safety of vonoprazan and amoxicillin(VA)dual therapy in the general population,there is still a lack of studies specifically focusing on its safety in elderly patients.AIM To evaluate efficacy and safety of VA dual therapy as first-line or rescue treatment for H.pylori in elderly patients.METHODS As a real-world retrospective study,data were collected from elderly patients aged 60 years and above who accepted VA dual therapy(vonoprazan 20 mg twice daily+amoxicillin 1000 mg thrice daily for 14 days)for H.pylori eradication in the Department of Gastroenterology at Peking University First Hospital between June 2020 and January 2024.H.pylori status was evaluated by^(13)C-urease breath test 6 weeks after treatment.All adverse events(AEs)during treatment were recorded.RESULTS In total,401 cases were screened.Twenty-one cases were excluded due to loss to follow-up,lack of re-examination,or unwillingness to take medication.The total of 380 included cases comprised 250 who received VA dual therapy as first-line treatment and 130 who received VA dual therapy as rescue treatment.H.pylori was successfully eradicated in 239 cases(95.6%)in the first-line treatment group and 116 cases(89.2%)in the rescue treatment group.The overall incidence of AEs was 9.5%for both groups.Specifically,9.2%of patients experienced an AE in the first-line treatment group and 10.0%in the rescue treatment group.Five patients discontinued treatment due to AE,with a discontinuation rate of 1.3%.No serious AE occurred.CONCLUSION The VA dual therapy regimen as a first-line treatment and a rescue therapy was effective and safe for elderly patients aged 60 and older.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
文摘Background:Gastric cancer(GC)remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies.The phosphoinositide 3-kinase and PI3K and Janus kinase(JAK)signal transducer and activator of transcription(JAK-STAT)pathways play pivotal roles in GC progression,making them attractive targets for therapeutic interventions.Methods:This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.KATOIII and SNU-5 GC cells were used for in vitro evaluation.Results:SBL-JP-0004 exhibited a robust binding affinity for JAK2 and PI3KCD kinases,as evidenced by molecular docking scores and molecular dynamics simulations.Binding interactions and Gibbs binding free energy estimates confirmed stable and favorable interactions with target proteins.SBL-JP-0004 displayed an half-maximal inhibitory concentration(IC_(50))value of 118.9 nM against JAK2 kinase and 200.9 nM against PI3KCD enzymes.SBL-JP-0004 exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells,with half-maximal growth inhibitory concentration(GI50)values of 250.8 and 516.3 nM,respectively.A significant elevation in the early phase apoptosis(28.53%in KATOIII cells and 26.85%in SNU-5 cells)and late phase apoptosis(17.37%in KATOIII cells and 10.05%in SNU-5 cells)were observed with SBL-JP-0004 treatment compared to 2.1%and 2.83%in their respective controls.Conclusion:The results highlight SBL-JP-0004 as a promising dual inhibitor targeting JAK2 and PI3KCD kinases for treating GC and warrant further preclinical and clinical investigations to validate its utility in clinical settings.
文摘Background: Individuals with coronary artery disease (CAD) who have undergone a percutaneous coronary intervention (PCI) are at an increased risk for adverse coronary events. Management with dual antiplatelet therapy (DAPT) has been indicated in this group, however, DAPT significantly increases the risk of bleeding. Objectives: This study aimed to evaluate aspirin versus clopidogrel and aspirin on major adverse cardiac and cerebrovascular events (MACCE) and risk of bleeding in individuals already on DAPT for one year after undergoing PCI. Methods: This was a single-center, double-arm, interventional, prospective study. A total of 956 individuals who had undergone PCI and were on DAPT for a year were enrolled. After calculating DAPT scores, individuals with DAPT scores ≥2 were assigned to the aspirin and clopidogrel group, and those with DAPT scores Results: The group on clopidogrel and aspirin demonstrated a significantly lower rate of MACCE when compared to those on aspirin alone (p = 0.003). However, stent thrombosis, stroke, and myocardial infarction (MI) did not significantly differ in an inter-group comparison. The rate of moderate bleeding was greater in the clopidogrel group;however, the difference was not found to be statistically significant (p = 0.19). Conclusions: Continuing DAPT for a period between 12 and 24 months after PCI in individuals with a DAPT score ≥2 had favorable outcomes in reducing coronary adverse events without resulting in significant bleeding.
基金2022 National Social Science Foundation Major Project:Research on the Path of High-quality Development of Natural Gas Industry Driven by Energy Revolution:Research on the Policy Guarantee System for High-quality Development of Natural Gas Industry of Sub-theme V(22&ZD105)2024 Chengdu Soft Science Research Project:Research on the Innovation Mechanism and Risk Prevention and Control of Chengdu's New Energy Industry under the Dual-Carbon Goal(2023-RK00-00174-ZF)2024 Sichuan Petroleum and Natural Gas Development Research Center.Annual Urban Gas Special Project:Mode Construction of High-Quality Transformation and Development of Gas Enterprises(2024SY024)。
文摘The dual-carbon goal has become a major national strategy in China,and the structure of China's energy supply and demand will usher in a profound change.As a clean and efficient fossil energy source,natural gas shoulders the important mission of transitioning the energy consumption structure from high-carbon to low-carbon.
文摘BACKGROUND Abnormal gastric acid reflux into the esophagus causes symptoms of gastroeso-phageal reflux disease(GERD)such as heartburn and regurgitation and also leads to mucosal damage.This damage can further lead to complications such as Bar-rett’s esophagus and esophagitis.Conventional proton pump inhibitors(PPIs)often fail to reduce nocturnal acid production,leaving patients with unresolved symptoms that worsen at night and decreased satisfaction.Happi ER,a novel dual delayed-release(DDR)formulation of rabeprazole,aims to address these limitations by providing both immediate and prolonged acid suppression.AIM To evaluate the safety and effectiveness of rabeprazole DDR 20 mg capsule in patients with GERD.METHODS This study involved a multicenter,real-world,prospective,observational design over an eight-week period.A total of 1022 GERD patients were treated with rabeprazole DDR 20 mg capsules(Happi ER),as prescribed by their physicians.We included adult patients with confirmed GERD and persistent heartburn symptoms despite prior PPI use.Outcome measures included heartburn severity,frequency of night-time awakenings,use of rescue medications,and overall patient satisfaction.RESULTS Rabeprazole DDR 20 mg capsules(Happi ER)were shown to be highly effective in treating GERD symptoms.At the end of the study,the mean heartburn score improved significantly from 2.46±0.67 at baseline to 0.16±0.39(P<0.0001).The median number of night-time awakenings decreased to 0(P<0.0001).More than 93%of patients rated the therapy as“excellent”or“very good”,reflecting high satisfaction.No significant adverse effects were reported,and the safety profile was comparable to that of traditional PPIs.CONCLUSION By providing both rapid and sustained acid suppression,Happi ER effectively treats GERD,particularly with respect to night-time symptoms.Its safety and efficacy profile make it a viable option for individuals with mild-to-moderate GERD,significantly improving the quality of life and symptom management.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金Supported by the National Natural Science Foundation of China Youth Science Foundation Project(No.82201176)Zhejiang Provincial Medical&Health Science Technology Program(No.2023KY153).
文摘AIM:To report the one-year surgical outcome Kahook Dual Blade goniotomy combined with phacoemulsification(KDB-Phaco)in Chinese patients with primary open angle glaucoma(POAG).METHODS:This is a retrospective study included 43 eyes of 28 Chinese POAG patients with cataract who accepted KDB-Phaco and followed-up for 12mo.Intraocular pressure(IOP),glaucoma medications and surgical complications were recorded.Success 1 and success 2 was defined as 5-21 mm Hg and 5-18 mm Hg,and success plus was determined if additional criteria of IOP reduction≥20%from baseline was reached.A corrected IOP by adding 3 mm Hg for each medication was used to do correlation test.Cox’s proportional hazards regression model was used to test the hazard ratio for factors associated with surgical success.RESULTS:After a 12-month follow up,the IOP decreased from 28.1±6.3 to 13.8±3.0 mm Hg(47.92%reduction,P<0.001),and the medications used decreased from 2.0(1.0)to 0.0(0.0)(95%reduction,P<0.001).The mean IOP of all postoperative visits were lower than preoperative IOP(all P<0.001),so as the number of glaucoma medications(all P<0.001).Complete success 1 and qualified success 1 were 87.80%and 100.00%respectively.The complete success 1 plus and qualified success 1 plus were 85.37%and 97.56%,respectively.Totally 82.93%and 90.24%of patients got complete success 2 and qualified success 2 while 80.49%and 87.80%of patients satisfied complete success 2 plus and qualified success 2 plus.Age(r=-0.511,P=0.001)and visual acuity(VA;r=-0.321,P=0.041)were negatively correlated with postoperative corrected IOP at 12mo,while anterior chamber depth(r=0.432,P=0.005),mean deviation(r=0.617,P<0.001)and visual field index(r=0.524,P<0.001)were positively correlated with it.Preoperative VA(OR=33.092,P=0.004)and MD(OR=1.481,P=0.018)were hazard factors associated with failure based on qualified success as 18 mm Hg.The main complications of KDB were hyphema(9.30%),IOP spike(11.63%)and peripheral anterior synechia(6.98%).CONCLUSION:KDB goniotomy is a safe and effective in the treatment for Chinese POAG patients.Preoperative VA and mean deviation may predict the surgical success.
基金National Natural Science Foundation of China(U22B20149,22308376)Outstanding Young Scholars Foundation of China University of Petroleum(Beijing)(2462023BJRC015)Foundation of United Institute for Carbon Neutrality(CNIF20230209)。
文摘Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金This work was financially supported by the National Natural Science Foundation of China(52173106 and 22375154).
文摘Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.
基金supported by the National Natural Science Foundation of China(22078030,52021004)Natural Science Foundation of Chongqing(2022NSCO-LZX0014)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-005,2023CDJXY-047)National Key Research and Development Project(2022YFC3901204)。
文摘Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.
基金supported by the National Natural Science Foundation of China (No.22309023,22179014)the project of Natural Science Foundation of Chongqing (Grant No.CSTB2022NSCQMSX0270)+3 种基金the China Postdoctoral Science Foundation (No.2022M720593)the youth project of science and technology research program of Chongqing Municipal Education Commission of China (Grant No.KJQN202201127)the Scientific Research Foundation of Chongqing University of Technology (2022ZDZ011,2022PYZ026)the special funding for research projects of Chongqing Human Resources and Social Security Bureau (Grant No.2022CQBSHTB1023)。
文摘The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
文摘Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.