The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
In this note,we study the Yang-Mills bar connection,i.e.,the curvature of obeys,δ_(A)^(*)F_(A)^(0.2)on a principal G-bundle P over a compact complex manifold.According to the Koszul-Malgrange criterion,any holomorphi...In this note,we study the Yang-Mills bar connection,i.e.,the curvature of obeys,δ_(A)^(*)F_(A)^(0.2)on a principal G-bundle P over a compact complex manifold.According to the Koszul-Malgrange criterion,any holomorphic structure on can be seen as a solution to this equation.Suppose that G=SU(2)or SO(3)and X is a complex surface with H_(1)(X,Z_(2))=0.We then prove that the-part curvature of an irreducible Yang-Mills bar connection vanishes,i.e.,(P,δ_(A))is holomorphic.展开更多
The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the releas...The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the release of hormones, neurotransmitters, and cytokines. These signaling molecules can travel from the gut to the brain and vice versa, influencing various physiological and cognitive functions. Emerging therapeutic strategies targeting the gut-brain connection include probiotics, prebiotics, and faecal microbiota transplantation (FMT). Probiotics are live microorganisms that are similar to the beneficial bacteria that are naturally found in the gut. Prebiotics are non-digestible fibers that feed the beneficial bacteria in the gut. FMT is a procedure in which faecal matter from a healthy donor is transplanted into the gut of a person with a diseased microbiome. Probiotics, prebiotics, and FMT have been shown to be effective in treating a variety of gastrointestinal disorders, and there is growing evidence that they may also be effective in treating neurological and psychiatric disorders. This review explores the emerging field of the gut-brain connection, focusing on the communication pathways between the gut microbiome and the central nervous system. We summarize the potential roles of gut dysbiosis in various neurological and psychiatric disorders. Additionally, we discuss potential therapeutic strategies, research limitations, and future directions in this exciting area of research. More research is needed to fully understand the mechanisms underlying the gut-brain connection and to develop safe and effective therapies that target this pathway. However, the findings to date are promising, and there is the potential to revolutionize the way we diagnose and treat a variety of neurological and psychiatric disorders.展开更多
In the context of the 60th anniversary of diplomatic relations between China and France and the upcoming 2024 China-France Year of Culture and Tourism,the exhibition"The Forbidden City and the Palace of Versaille...In the context of the 60th anniversary of diplomatic relations between China and France and the upcoming 2024 China-France Year of Culture and Tourism,the exhibition"The Forbidden City and the Palace of Versailles"jointly hosted by the Palace Museum and the Palace of Versailles presents a comprehensive view of the extensive and deep interactions between China and France in the realms of diplomacy,culture,and art during the 17th and 18th centuries.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,con...A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.展开更多
Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and...Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.展开更多
As companies look to reduce their carbon footprint,the green electricity market is growing by leaps and bounds in China By purchasing Green Electricity Certificates(GECs),the organisers of the seventh China Internatio...As companies look to reduce their carbon footprint,the green electricity market is growing by leaps and bounds in China By purchasing Green Electricity Certificates(GECs),the organisers of the seventh China International Import Expo(CIIE)have succeeded in making the once energy-intensive event more environmentally friendly.展开更多
Digital services stand out at this year’s China International Fair for Trade in Services.Visitors gathered around a large screen displaying scenes from the video game Black Myth:Wukong,China’s first AAA title,where ...Digital services stand out at this year’s China International Fair for Trade in Services.Visitors gathered around a large screen displaying scenes from the video game Black Myth:Wukong,China’s first AAA title,where they learnt that the monkey king can move with lifelike fluidity,performing seamless actions,thanks to Virtual Motion’s state-of-the-art motion capture technology.展开更多
The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is ...The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.展开更多
Dendrimers are man-made polymeric macromolecules created from branching chains known as monomers. Topological indices (TIs) are molecular descriptors that define the structure and aid in establishing relationships wit...Dendrimers are man-made polymeric macromolecules created from branching chains known as monomers. Topological indices (TIs) are molecular descriptors that define the structure and aid in establishing relationships with various physicochemical properties such as volatility, density, melting point, and more. TIs are categorized according to their distance, spectrum, and degree. Within these TIs, topological descriptors based on connection numbers (CN) hold significant importance. In this article, we calculate the overall outcomes of Zagreb connection indices, including the inverse sum connection index (ISCI), geometric arithmetic connection index (GACI), harmonic connection index (HCI), atom bond connectivity connection index (ABCCI), hyper Zagreb connection index (HZCI), and symmetric division connection index (SDCI) for the polypropyleneimine anoctamin (PPIO) dendrimer and Poly(Propyl) Ether Imine (PPEI) dendrimers. PPIO dendrimers and PPEI dendrimers are a new class of versatile nanostructured materials capable of exhibiting extraordinary physicochemical properties, which are closely related to their intricate tree-like architecture. PPIO dendrimers (synthesized using polypropylene imine) are relatively biocompatible and show promise as drug carriers, mainly because their core is hydrophobic with a hydrophilic surface. The PPEI dendrimers are highly soluble in alcohols and water and offer the ability to introduce a versatile range of functionalities. Their controlled structure, stability and tunable surface functionalities make these dendrimers attract much attention in several fields like biomedical applications, catalysis and nanotechnology. Additionally, a comparative analysis is performed to validate the excellence of our generated graphical and numerical outcomes.展开更多
In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training cos...In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training costs and long inference times, limiting their practical application in denoising tasks. This paper proposes a new dual convolutional denoising network with skip connections(DECDNet), which achieves an ideal balance between denoising effect and network complexity. The proposed DECDNet consists of a noise estimation network, a multi-scale feature extraction network, a dual convolutional neural network, and dual attention mechanisms. The noise estimation network is used to estimate the noise level map, and the multi-scale feature extraction network is combined to improve the model's flexibility in obtaining image features. The dual convolutional neural network branch design includes convolution and dilated convolution interactive connections, with the lower branch consisting of dilated convolution layers, and both branches using skip connections. Experiments show that compared with other models, the proposed DECDNet achieves superior PSNR and SSIM values at all compared noise levels, especially at higher noise levels, showing robustness to images with higher noise levels. It also demonstrates better visual effects, maintaining a balance between denoising and detail preservation.展开更多
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road...Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.展开更多
January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of...January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of global leaders,innovators,and changemakers.This year’s programme reflects the dynamic and evolving spirit of P2C,offering engaging discussions,interactive sessions,and valuable networking opportunities.Together,we will not only celebrate our collective achievements but also confront the challenges that remain—ensuring that progress toward digital inclusion is sustainable and equitable.展开更多
A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and m...A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and minds of the two peoples.From the screening of Chinese films in Thailand to the deepening collaboration within the film industry,the history of bilateral cinematic exchange not only showcases the unique value of film as a cultural medium but also reflects the resilience and vitality of grassroots cultural interactions amid a complex international landscape.This shared history,marked by both challenges and triumphs,has laid a solid foundation for future cultural cooperation,becoming a memorable chapter in the narrative of China-Thailand relations.展开更多
Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates ...Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates cellular behavior.Mechano-regulation processes involve matrix modification and cell activation to preserve tissue function.The ECM remodeling is crucial for force transmission.Cytoskeleton components are involved in force sensing and transmission,affecting cellular adhesion,motility,and gene expression.Proper mechanical loading helps to maintain tissue health,while imbalances may lead to pathological processes.Active and passive movement,including manual mobilization,improves connective tissue elasticity,promotes ECM-cell homeostasis,and reduces fibrosis.In rehabilitation,understanding mechanical-regulation processes is necessary for ameliorating and developing treatments aimed at preserving tissue elasticity and preventing fibrosis.In this commentary,we aim to globally describe the biological processes involved in mechanical force transmission in connective tissue as support for translational studies and clinical applications in the rehabilitation field.展开更多
AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive...AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.展开更多
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金supported by the National Natural Science Foundation of China(12271496)the Youth Innovation Promotion Association CAS,the Fundamental Research Funds of the Central Universities,and the USTC Research Funds of the Double First-Class Initiative.
文摘In this note,we study the Yang-Mills bar connection,i.e.,the curvature of obeys,δ_(A)^(*)F_(A)^(0.2)on a principal G-bundle P over a compact complex manifold.According to the Koszul-Malgrange criterion,any holomorphic structure on can be seen as a solution to this equation.Suppose that G=SU(2)or SO(3)and X is a complex surface with H_(1)(X,Z_(2))=0.We then prove that the-part curvature of an irreducible Yang-Mills bar connection vanishes,i.e.,(P,δ_(A))is holomorphic.
文摘The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the release of hormones, neurotransmitters, and cytokines. These signaling molecules can travel from the gut to the brain and vice versa, influencing various physiological and cognitive functions. Emerging therapeutic strategies targeting the gut-brain connection include probiotics, prebiotics, and faecal microbiota transplantation (FMT). Probiotics are live microorganisms that are similar to the beneficial bacteria that are naturally found in the gut. Prebiotics are non-digestible fibers that feed the beneficial bacteria in the gut. FMT is a procedure in which faecal matter from a healthy donor is transplanted into the gut of a person with a diseased microbiome. Probiotics, prebiotics, and FMT have been shown to be effective in treating a variety of gastrointestinal disorders, and there is growing evidence that they may also be effective in treating neurological and psychiatric disorders. This review explores the emerging field of the gut-brain connection, focusing on the communication pathways between the gut microbiome and the central nervous system. We summarize the potential roles of gut dysbiosis in various neurological and psychiatric disorders. Additionally, we discuss potential therapeutic strategies, research limitations, and future directions in this exciting area of research. More research is needed to fully understand the mechanisms underlying the gut-brain connection and to develop safe and effective therapies that target this pathway. However, the findings to date are promising, and there is the potential to revolutionize the way we diagnose and treat a variety of neurological and psychiatric disorders.
文摘In the context of the 60th anniversary of diplomatic relations between China and France and the upcoming 2024 China-France Year of Culture and Tourism,the exhibition"The Forbidden City and the Palace of Versailles"jointly hosted by the Palace Museum and the Palace of Versailles presents a comprehensive view of the extensive and deep interactions between China and France in the realms of diplomacy,culture,and art during the 17th and 18th centuries.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
基金supported by the China Scholarship Council (Grant No.2018-0861-0211).
文摘A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.
基金Under the auspices of the National Natural Science Foundation of China(No.41971202)the National Natural Science Foundation of China(No.42201181)the Fundamental research funding targets for central universities(No.2412022QD002)。
文摘Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.
文摘As companies look to reduce their carbon footprint,the green electricity market is growing by leaps and bounds in China By purchasing Green Electricity Certificates(GECs),the organisers of the seventh China International Import Expo(CIIE)have succeeded in making the once energy-intensive event more environmentally friendly.
文摘Digital services stand out at this year’s China International Fair for Trade in Services.Visitors gathered around a large screen displaying scenes from the video game Black Myth:Wukong,China’s first AAA title,where they learnt that the monkey king can move with lifelike fluidity,performing seamless actions,thanks to Virtual Motion’s state-of-the-art motion capture technology.
文摘The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.
文摘Dendrimers are man-made polymeric macromolecules created from branching chains known as monomers. Topological indices (TIs) are molecular descriptors that define the structure and aid in establishing relationships with various physicochemical properties such as volatility, density, melting point, and more. TIs are categorized according to their distance, spectrum, and degree. Within these TIs, topological descriptors based on connection numbers (CN) hold significant importance. In this article, we calculate the overall outcomes of Zagreb connection indices, including the inverse sum connection index (ISCI), geometric arithmetic connection index (GACI), harmonic connection index (HCI), atom bond connectivity connection index (ABCCI), hyper Zagreb connection index (HZCI), and symmetric division connection index (SDCI) for the polypropyleneimine anoctamin (PPIO) dendrimer and Poly(Propyl) Ether Imine (PPEI) dendrimers. PPIO dendrimers and PPEI dendrimers are a new class of versatile nanostructured materials capable of exhibiting extraordinary physicochemical properties, which are closely related to their intricate tree-like architecture. PPIO dendrimers (synthesized using polypropylene imine) are relatively biocompatible and show promise as drug carriers, mainly because their core is hydrophobic with a hydrophilic surface. The PPEI dendrimers are highly soluble in alcohols and water and offer the ability to introduce a versatile range of functionalities. Their controlled structure, stability and tunable surface functionalities make these dendrimers attract much attention in several fields like biomedical applications, catalysis and nanotechnology. Additionally, a comparative analysis is performed to validate the excellence of our generated graphical and numerical outcomes.
基金funded by National Nature Science Foundation of China,grant number 61302188。
文摘In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training costs and long inference times, limiting their practical application in denoising tasks. This paper proposes a new dual convolutional denoising network with skip connections(DECDNet), which achieves an ideal balance between denoising effect and network complexity. The proposed DECDNet consists of a noise estimation network, a multi-scale feature extraction network, a dual convolutional neural network, and dual attention mechanisms. The noise estimation network is used to estimate the noise level map, and the multi-scale feature extraction network is combined to improve the model's flexibility in obtaining image features. The dual convolutional neural network branch design includes convolution and dilated convolution interactive connections, with the lower branch consisting of dilated convolution layers, and both branches using skip connections. Experiments show that compared with other models, the proposed DECDNet achieves superior PSNR and SSIM values at all compared noise levels, especially at higher noise levels, showing robustness to images with higher noise levels. It also demonstrates better visual effects, maintaining a balance between denoising and detail preservation.
文摘Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.
文摘January 30,Geneva,Switzerland&online As we step into a pivotal moment in the journey toward universal and meaningful connectivity,the Partner2Connect(P2C)Annual Meeting promises to be a transformative gathering of global leaders,innovators,and changemakers.This year’s programme reflects the dynamic and evolving spirit of P2C,offering engaging discussions,interactive sessions,and valuable networking opportunities.Together,we will not only celebrate our collective achievements but also confront the challenges that remain—ensuring that progress toward digital inclusion is sustainable and equitable.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022JJ037).
文摘A borderless art form,film shoulders a mission of sharing culture and fostering emotional bonds.In the relationship between China and Thailand,cinema has long served as a vital cultural bridge,uniting the hearts and minds of the two peoples.From the screening of Chinese films in Thailand to the deepening collaboration within the film industry,the history of bilateral cinematic exchange not only showcases the unique value of film as a cultural medium but also reflects the resilience and vitality of grassroots cultural interactions amid a complex international landscape.This shared history,marked by both challenges and triumphs,has laid a solid foundation for future cultural cooperation,becoming a memorable chapter in the narrative of China-Thailand relations.
文摘Connective tissue is a dynamic structure that reacts to environmental cues to maintain homeostasis,including mechanical properties.Mechanical load influences extracellular matrix(ECM)—cell interactions and modulates cellular behavior.Mechano-regulation processes involve matrix modification and cell activation to preserve tissue function.The ECM remodeling is crucial for force transmission.Cytoskeleton components are involved in force sensing and transmission,affecting cellular adhesion,motility,and gene expression.Proper mechanical loading helps to maintain tissue health,while imbalances may lead to pathological processes.Active and passive movement,including manual mobilization,improves connective tissue elasticity,promotes ECM-cell homeostasis,and reduces fibrosis.In rehabilitation,understanding mechanical-regulation processes is necessary for ameliorating and developing treatments aimed at preserving tissue elasticity and preventing fibrosis.In this commentary,we aim to globally describe the biological processes involved in mechanical force transmission in connective tissue as support for translational studies and clinical applications in the rehabilitation field.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203).
文摘AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.