This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S....This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.展开更多
The complex of samaric chloride lower hydrate with diethylammoniumdiethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2atmosphere. The title complex was identified as Et_2NH_2[Sm(...The complex of samaric chloride lower hydrate with diethylammoniumdiethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2atmosphere. The title complex was identified as Et_2NH_2[Sm(S_2CNEt_2)_4] by chemical and elementalanalyses, the bonding characteristics of which was characterized by IR. The enthalpies of solutionof samaric chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change ofliquid-phase reaction of formation for Et_2NH_2[Sm(S_2CNEt_2)_4] at different temperatures weredetermined by mi-crocalorimetry. On the basis of experimental and calculated results, threethermodynamic parameters (the activation enthalpy, the activation entropy, and the activation freeenergy), the rate constant, and three kinetic parameters (the apparent activation energy, thepre-exponential constant, and the reaction order) of liquid phase reaction of formation wereobtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by athermochemical cycle.展开更多
The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2...The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Nd(S_2CNEt_2)_4] by chemical and elemental analyses and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2[Nd (S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.展开更多
The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N 2 atmosphere. The elemental and chemical analyse...The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N 2 atmosphere. The elemental and chemical analyses show that the complex has the general formula Et 2NH 2[Ho(S 2CNEt 2) 4]. It was also characterized by IR spectroscopy. The enthalpies of the dissolution of holmium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reactions of the formation of Et 2NH 2[Ho(S 2CNEt 2) 4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the liquid-phase reaction of the complex formation were obtained. The enthalpy change of the solid-phase complex formation reaction at 298.15 K was calculated by means of a thermochemical cycle.展开更多
The complex of praseodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) has been synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as ...The complex of praseodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) has been synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Pr- (S_2CNEt_2)_4] by chemical and elemental analyses, the bonding characteristics of which were characterized by IR spectrum. The enthalpy of solution for praseodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reaction of formation for Et_2NH_2[Pr-(S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.展开更多
文摘This study investigated whether liposomes could enhance the permeation and penetration of diclofenac diethylammonium. For this, a 1.16% diclofenac diethylammonium liposome gel formulation was developed (Grupo Leti, S.A.V.). In vitro and ex vivo tests were conducted to analyze the diffusion and penetration profiles of the formulation. The profiles obtained were compared with a commercially available product, DiAnalper gel (Pharmetique Labs). The in vitro test was assessed in a Franz diffusion cell system using a dialysis membrane. The cumulative amount of drug permeated after 24 h demonstrated a significantly (p 2, whereas the commercial formulation yielded values of 371.00 ± 3.54 μg/cm2. These findings were further supported by consistent results in the percentage of drug release, flux, and permeability coefficient, all indicating a notable improvement in diffusion associated with the liposomal gel formulation. The tape stripping assay performed on pig ear skin demonstrates a statistically significant difference (p < 0.05) between the penetration transport of the diclofenac from liposome gel formulation (1413.95 ± 250.51 μg) and the conventional product (202.36 ± 18.07 μg) the liposomal formulation was able to cross de stratum corneum and deliver a high amount of drug to the skin. These findings demonstrated that incorporating diclofenac into a liposomal system significantly improved the drug delivery, which could confer an advantage for clinical uses.
基金This work is financially supported by the National Natural Science Foundation of China (No. 20171036) and the Education Department of Shaanxi Province (No. 01JK229)
文摘The complex of samaric chloride lower hydrate with diethylammoniumdiethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2atmosphere. The title complex was identified as Et_2NH_2[Sm(S_2CNEt_2)_4] by chemical and elementalanalyses, the bonding characteristics of which was characterized by IR. The enthalpies of solutionof samaric chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change ofliquid-phase reaction of formation for Et_2NH_2[Sm(S_2CNEt_2)_4] at different temperatures weredetermined by mi-crocalorimetry. On the basis of experimental and calculated results, threethermodynamic parameters (the activation enthalpy, the activation entropy, and the activation freeenergy), the rate constant, and three kinetic parameters (the apparent activation energy, thepre-exponential constant, and the reaction order) of liquid phase reaction of formation wereobtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by athermochemical cycle.
文摘The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Nd(S_2CNEt_2)_4] by chemical and elemental analyses and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2[Nd (S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.
基金the National Natural Science Foundation of China(No. 2 0 1710 36 ) and the Natural Science Foundation ofShaanxi Province(No.2 0 1710 36
文摘The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N 2 atmosphere. The elemental and chemical analyses show that the complex has the general formula Et 2NH 2[Ho(S 2CNEt 2) 4]. It was also characterized by IR spectroscopy. The enthalpies of the dissolution of holmium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reactions of the formation of Et 2NH 2[Ho(S 2CNEt 2) 4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the liquid-phase reaction of the complex formation were obtained. The enthalpy change of the solid-phase complex formation reaction at 298.15 K was calculated by means of a thermochemical cycle.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 0 1710 3 6)andtheEducationalCommitteeFoundationofShaanxiProvince (No .0 1JK2 2 9)
文摘The complex of praseodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) has been synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Pr- (S_2CNEt_2)_4] by chemical and elemental analyses, the bonding characteristics of which were characterized by IR spectrum. The enthalpy of solution for praseodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reaction of formation for Et_2NH_2[Pr-(S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.
基金supported by National Natural Science Foundation of China(21361012)Science and Technology Supporting Project of Jiangxi Province(20133ACG70007)+2 种基金Young Scientist of Jiangxi Province(20144BCB23038)Education Department of Jiangxi Province(KJLD12034)Innovation and Entrepreneurship Training Project for College Students of Jinggangshan University