Shrub is an important factor on structuring ground arthropod communities in desert ecosystems. In this study, in order to determine how shrubs and their species influence ground arthropod distribution patterns in a sa...Shrub is an important factor on structuring ground arthropod communities in desert ecosystems. In this study, in order to determine how shrubs and their species influence ground arthropod distribution patterns in a sandy desert scrubland dominated by two different shrub species, Calligonum mongolicum and Nitraria sphaerocarpa, the ground arthropods were sampled with pitfall traps during spring, summer and autumn. At the community level, total arthropod abundance was shown to be significantly higher under shrubs than in intershrub bare areas in spring; similar patterns occurred in terms of the richness of arthropod groups in the spring and over three seasons, suggesting season-specific shrub presence effects on arthropod activity. In addition, more arthropods were found under N. sphaerocarpa shrubs than under C. rnongolicum shrubs in autumn, suggesting season-specific effects of shrub species of arthropod activity, whereas more arthropods taxa were captured under C. mongoIicum than N. sphaerocarpa. At the trophic group level, the abundances of predator and herbivore arthropods were significantly greater under shrubs than in intershrub bare habitats, whereas herbivore arthropods were more abundant under N. sphaerocarpa than C. rnongolicum, and an opposite rule was detected for predator arthropods At the family level, the mean abundances of Carabidae, Curculionidae, Gnaphosidae and Lycosidae were significantly higher in the shrub microhabitats than in the intershrub bare habitat, there was no significant difference between habitats on the mean abundances of Formicidae and Tenebrionidae. The study results suggested that shrub presence and shrub species variation are important determinants of ground arthropod assemblages in this desert ecosystem, but the responses of ar- thropods differed among trophic and taxonomic groups.展开更多
Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored...Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems.展开更多
[Objective] To establish drought resistance evaluation index system of desert shrubs,and provide scientific support for selecting quality tree species.[Method] Taking 2-year-old seedlings of 12 desert shrubs in Ulan B...[Objective] To establish drought resistance evaluation index system of desert shrubs,and provide scientific support for selecting quality tree species.[Method] Taking 2-year-old seedlings of 12 desert shrubs in Ulan Buh Desert ecosystem as the test materials,7 water physiological indexes were tested,principal component analysis and cluster analysis were applied to explore drought resistance of the shrubs.[Results](a) Water potential of Ephedra distachya Linn.,Nitraia tangutorum Bobr.,Caragana korshinski Kom.was lower than that of the other 9 species;bound water content(V_a) and bound water/free water ratio(V_a/V_s) of Zygophyl um xanthoxylon Maxim.was 64.20% and 3.3,higher than the others';transpiration rate of Atraphaxis bracteata A.Los.,Nitraia tangutorum Bobr.and Tamarix elongata Ldb.was significantly lower than the others';constant weight time of Haloxylon ammodendron(C.A.Mey.) Bunge and Ephedra distachya Linn.was the longest(144 h);residual moisture content of Ammopiptanthus mongolicus Maxim.was the highest(44.80%).(b) Water potential,bound water/free water(V_a/V_s),residual moisture content,bound water,constant weight time,and transpiration rate had great impact on drought resistance of plant,and the accumulative variance contribution rate achieved 87.59%.[Conclusion] According to the drought resistance,the 12 species were classified into 3 categories,namely shrubs with strong drought resistance(Ephedra distachya Linn.),shrubs with moderate drought resistance(Haloxylon ammodendron(C.A.Mey.) Bunge,Nitraia tangutorum Bobr.,and Zygophyllum xanthoxylon Maxim.);shrubs with poor drought resistance(Hedysarunn scoparium Fisch,Hedysarum mongolicum Turcz.,Tamarix elongata Ldb.,Caragana korshinskii Kom.,Ammopiptanthus mongolicus Maxim.,Atraphaxis bracteata A.Los.,Cal igonum mongolicum Mattei.,and Caragana microphylla Lam.).展开更多
Biomass is among the most important state variables used to characterize ecosystems. Estimation of tree biomass involves the development of species-specific “allometric equations” that describe the relationship betw...Biomass is among the most important state variables used to characterize ecosystems. Estimation of tree biomass involves the development of species-specific “allometric equations” that describe the relationship between tree biomass and tree diameter and/or height. While many allometric equations were developed for northern hemisphere and tropical species, rarely have they been developed for trees in arid ecosystems, limiting, amongst other things, our ability to estimate carbon stocks in arid regions. Acacia raddiana and A. tortilis are major components of savannas and arid regions in the Middle East and Africa, where they are considered keystone species. Using the opportunity that trees were being uprooted for land development, we measured height (H), north-south (C1) and east-west (C2) canopy diameters, stem diameter at 1.3 meters of the largest stem (D1.3 or DBH), and aboveground fresh and dry weight (FW and DW, respectively) of nine trees (n = 9) from each species. For A. tortilis only, we recorded the number of trunks, and measured the diameter of the largest trunk at ground level (D0). While the average crown (canopy) size (C1 + C2) was very similar among the two species, Acacia raddiana trees were found to be significantly taller than their Acacia tortilis counterparts. Results show that in the arid Arava (southern Israel), an average adult acacia tree has ~200 kg of aboveground dry biomass and that a typical healthy acacia ecosystem in this region, may include ~41 tons of tree biomass per km2. The coefficients of DBH (tree diameter at breast height) to biomass and wood volume, could be used by researchers studying acacia trees throughout the Middle East and Africa, enabling them to estimate biomass of acacia trees and to evaluate their importance for carbon stocks in their arid regions. Highlights: 1) Estimations of tree biomass in arid regions are rare. 2) Biomass allometric equations were developed for A. raddiana and A. tortilis trees. 3) Equations contribute to the estimation of carbon stocks in arid regions.展开更多
Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of S...Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences and the research group led by Prof.Ignacio Rodriguez-Iturbe from展开更多
Based on a five-variable theoretical ecosystem model, the stability of equilibrium state and the nonlinear feature of the transition between a grassland state and a desert state are investigated. The approach of the c...Based on a five-variable theoretical ecosystem model, the stability of equilibrium state and the nonlinear feature of the transition between a grassland state and a desert state are investigated. The approach of the conditional nonlinear optimal perturbations (CNOPs), which are the nonlinear generalization of the linear singular vectors (LSVs), is adopted. The numerical results indicate that the linearly stable grassland and desert states are nonlinearly unstable to large enough initial perturbations on the condition that the moisture index # satisfies 0.3126 〈 μ 〈 0.3504. The perturbations represent some kind of anthropogenic influence and natural factors. The results obtained by CNOPs, LSVs and Lyapunov vectors (LVs) are compared to analyze the nonlinear feature of the transition between the grassland state and the desert state. Besides this, it is shown that the five-variable model is superior to the three-variable model in providing more visible signals when the transitions occur.展开更多
As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical...As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.展开更多
Shrub presence has an important effect on the structuring of ground beetles in desert ecosystems. In this study, in order to determine how shrubs and different species influence ground beetle assemblages in a sandy de...Shrub presence has an important effect on the structuring of ground beetles in desert ecosystems. In this study, in order to determine how shrubs and different species influence ground beetle assemblages in a sandy desert scrubland dominated by two different shrub species, namely Calligonum mongolicum and Nitraria sphaerocarpa, we sampled the ground beetles using pitfall traps during spring, summer and autumn in 2012. At the community level, the activity density of the ground beetles was shown to be significantly higher under shrubs than in intershrub bare habitats in spring; but an opposite pattern occurred in autumn, suggesting the presence of sea- son-specific shrub effects on the activity density of the ground beetles. Meanwhile, at the trophic group level, the activity density and species richness of predators were significantly greater under shrubs than in intershrub bare habitats in spring, whereas an opposite trend occurred on the activity density in autumn. N. sphaerocarpa shrubs had a positive effect on the activity density of herbivores in the three seasons, and C. mongolicum shrubs had a positive effect on the activity density of detritivores in spring and autumn. At the species level, more Microdera sp. was captured under shrubs than in intershrub bare habitats in spring. During the same time, we also found that C. mongolicum shrubs had a positive effect on Blaps gobiensis in spring, Carabus sp. in autumn, and Tentyria sp. in spring and autumn, and N. sphaerocarpa shrubs had a positive effect on Cyphogenia chinensis, Sternoplax setosa in spring and summer, and Curculionidae sp. 1 in summer and autumn. The study results suggest that shrub presence, shrub species and season variation are important factors for ground beetle assemblages in this desert ecosystem, but the responses of beetles differed among trophic and taxonomic levels.展开更多
Arbuscular mycorrhizal fungi(AMF) are known to facilitate the growth and vigour of many plants, particularly in arid ecosystems. In a survey of AMF in a date palm plantation and two natural sites of a desert in Oman...Arbuscular mycorrhizal fungi(AMF) are known to facilitate the growth and vigour of many plants, particularly in arid ecosystems. In a survey of AMF in a date palm plantation and two natural sites of a desert in Oman, we generated many single spore-derived cultures of AMF. We identified a number of these isolates based on spore morphotyping and molecular phylogenetic analysis using the sequence of the LSU-rDNA. Here, we presented the characteristics of four species of AMF recovered, namely Claroideoglomus drummondii, Diversispora aurantia, Diversispora spurca and Funneliformis africanum. The four species have been described previously, but for the Arabian Peninsula they are reported here for the first time. Our endeavor of isolation and characterization of some AMF habituated to arid sites of Arabia represents a first step towards application for environmental conservation and sustainable agriculture in this region.展开更多
Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such waterlimited ecosystems, pulsed water inputs directly control the belowground processes through a series of ...Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such waterlimited ecosystems, pulsed water inputs directly control the belowground processes through a series of soil drying and rewetting cycles. To investigate the effects of sporadic addition of water on soil CO2 effux, an artificial precipitation event (3 mm) was applied to a desert shrub ecosystem in the Mu Us Sand Land of the Ordos Plateau in China. Soil respiration rate increased 2.8 4.1 times immediately after adding water in the field, and then it returned to background level within 48 h. During the experiment, soil CO2 production was between 2 047.0 and 7 383.0 mg m^-2. In the shrubland, soil respiration responses showed spatial variations, having stronger pulse effects beneath the shrubs than in the interplant spaces. The spatial variation of the soil respiration responses was closely related with the heterogeneity of soil substrate availability. Apart from precipitation, soil organic carbon and total nitrogen pool were also identified as determinants of soil CO2 loss in desert ecosystems.展开更多
Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon S...Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China was analyzed using high-throughput amplicon pyrosequencing analysis. The sequences of the most abundant OUTs (Operational Taxonomic Units) in the sediment of Crescent Moon Spring were compared with the sequences of those most abundant OUTs of various origins from NCBI GenBank database to detect the origins of bacteria in the sediment of Crescent Moon Spring. Also, bacterial compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide were compared using cluster analysis to determine the possible factors affecting bacterial compositions. In total, 11,855 sequences were obtained and 30 phyla were identified. At the phylum level, the dominant phylum was Proteobacteria with α-Proteobacteria being the first dominant class and the second dominant phylum was Planctomycetes. Our finding that α-Proteobacteria being the first dominant class of Proteobacteria and Planctomycetes being the second dominant phyla are somewhat contradictory with reports from other desert lake sediments. This difference could be resulted from water hydration and conductivity, as well as oligotrophic conditions of Crescent Moon Spring. At the genus level, Rhodobacter, Caldilinea, Planctomyces, and Porphyrobacterwere the dominant genera in the sediment of Crescent Moon Spring. Comparisons on sequences of the most abundant OUTs (including OTU3615, OTU6535, and OTU6646) between sediment of Crescent Moon Spring and various origins from NCBI GenBank database indicate that the origins of bacteria in the sediment of Crescent Moon Spring are likely from the underground water. Furthermore, cluster analysis on comparisons of bacteria compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide shows that at regional scales, bacterial compositions may be mainly affected by geographical patterns, precipitation amounts, and pH values. Collectively, our results provide new knowledge on the bacterial diversity in desert lake ecosystems.展开更多
Many studies focus on rodent community pattern and changing at present in the world, but most of them are conducted in small plots. Few studies investigated the rodent community classification and diversity in semi-de...Many studies focus on rodent community pattern and changing at present in the world, but most of them are conducted in small plots. Few studies investigated the rodent community classification and diversity in semi-desert and desert areas at regional scale, although some researchers started to study the change of animal community patterns on a large scale. We investigated rodent communities in desert, non-irrigated farming land and desert steppe of Inner Mongolia, covering an area of 380,000 km2 from May to August in 1988-1993 and in 1998-2003, respectively, in order to reveal the changing characteristics of zonal rodent communities. The community classification and diversity of rodents were analyzed in research areas. The results suggested that the communities could be classified in 9 zonal types. Spermophilus dauricus, Cricetulus longicaudatus and Eutamias sibiricus were dominant species in Community I;Phodopus roborovskii, Cricetulus barabansis and Cricetulus longicaudatus were dominant in Community II;Meriones unguiculatus, Phodopus roborovskii and Cricetulus longicaudatus were dominant in Community III;Allactaga sibirica, Allactaga bullata and Spermophilus dauricus were dominant in Community IV;Allactaga bullata, Dipus sagitta and Meriones unguiculatus were dominant in Community V;Meriones meridianus, Spermophilus dauricus and Allactaga bullata were dominant in Community VI;Allactaga sibirica, Allactaga bullata and Dipus sagitta were dominant in Community VII;Phodopus roborovskii, Dipus sagitta and Allactaga sibirica were dominant in Community VIII;Meriones meridianus, Dipus sagitta and Allactaga sibirica were dominant in Community IX. The community diversity and evenness analysis showed that the edge effect of community, the effect of disturbance and habitat fragmentation and scale effect were significantly correlated with community diversity in the semi-desert and desert regions. The ordinal results of 9 zonal rodent communities were in accordance with the results analyzed with similar community indices, showing the habitat change in the characteristics of the above-mentioned groups.展开更多
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef...Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies.展开更多
植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生...植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)中位于中国干旱半干旱区的2个草地生态系统观测研究站(海北站、内蒙古站)和5个荒漠生态系统类型观测研究站(鄂尔多斯站、阜康站、临泽站、奈曼站、沙坡头站)的典型生态系统,对其按照CERN生态系统长期观测规范开展长期观测获取的植被地上生物量的2005–2020年间生长季的月动态实测数据进行了收集整理与质量控制,并开展了样方原始调查数据到样地尺度观测数据的统计计算,生成了植被地上生物量数据集,可为中国干旱半干旱区草地和荒漠生态系统对全球气候变化响应及植被保育与可持续发展等研究提供地面观测数据支撑。展开更多
基金funded by one of National Basic Research Program of China (No. 2013CB429903)National Natural Science Foundation of China (Grant Nos. 41201248 and 31170496)
文摘Shrub is an important factor on structuring ground arthropod communities in desert ecosystems. In this study, in order to determine how shrubs and their species influence ground arthropod distribution patterns in a sandy desert scrubland dominated by two different shrub species, Calligonum mongolicum and Nitraria sphaerocarpa, the ground arthropods were sampled with pitfall traps during spring, summer and autumn. At the community level, total arthropod abundance was shown to be significantly higher under shrubs than in intershrub bare areas in spring; similar patterns occurred in terms of the richness of arthropod groups in the spring and over three seasons, suggesting season-specific shrub presence effects on arthropod activity. In addition, more arthropods were found under N. sphaerocarpa shrubs than under C. rnongolicum shrubs in autumn, suggesting season-specific effects of shrub species of arthropod activity, whereas more arthropods taxa were captured under C. mongoIicum than N. sphaerocarpa. At the trophic group level, the abundances of predator and herbivore arthropods were significantly greater under shrubs than in intershrub bare habitats, whereas herbivore arthropods were more abundant under N. sphaerocarpa than C. rnongolicum, and an opposite rule was detected for predator arthropods At the family level, the mean abundances of Carabidae, Curculionidae, Gnaphosidae and Lycosidae were significantly higher in the shrub microhabitats than in the intershrub bare habitat, there was no significant difference between habitats on the mean abundances of Formicidae and Tenebrionidae. The study results suggested that shrub presence and shrub species variation are important determinants of ground arthropod assemblages in this desert ecosystem, but the responses of ar- thropods differed among trophic and taxonomic groups.
基金supported by the Science Fund for Distinguished Young Scholars in the Xinjiang Uygur Autonomous Region (QN2015JQ007)
文摘Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems.
基金Sponsored by Scientific Research Program of National Forestry Public Welfare Trade(201504710)
文摘[Objective] To establish drought resistance evaluation index system of desert shrubs,and provide scientific support for selecting quality tree species.[Method] Taking 2-year-old seedlings of 12 desert shrubs in Ulan Buh Desert ecosystem as the test materials,7 water physiological indexes were tested,principal component analysis and cluster analysis were applied to explore drought resistance of the shrubs.[Results](a) Water potential of Ephedra distachya Linn.,Nitraia tangutorum Bobr.,Caragana korshinski Kom.was lower than that of the other 9 species;bound water content(V_a) and bound water/free water ratio(V_a/V_s) of Zygophyl um xanthoxylon Maxim.was 64.20% and 3.3,higher than the others';transpiration rate of Atraphaxis bracteata A.Los.,Nitraia tangutorum Bobr.and Tamarix elongata Ldb.was significantly lower than the others';constant weight time of Haloxylon ammodendron(C.A.Mey.) Bunge and Ephedra distachya Linn.was the longest(144 h);residual moisture content of Ammopiptanthus mongolicus Maxim.was the highest(44.80%).(b) Water potential,bound water/free water(V_a/V_s),residual moisture content,bound water,constant weight time,and transpiration rate had great impact on drought resistance of plant,and the accumulative variance contribution rate achieved 87.59%.[Conclusion] According to the drought resistance,the 12 species were classified into 3 categories,namely shrubs with strong drought resistance(Ephedra distachya Linn.),shrubs with moderate drought resistance(Haloxylon ammodendron(C.A.Mey.) Bunge,Nitraia tangutorum Bobr.,and Zygophyllum xanthoxylon Maxim.);shrubs with poor drought resistance(Hedysarunn scoparium Fisch,Hedysarum mongolicum Turcz.,Tamarix elongata Ldb.,Caragana korshinskii Kom.,Ammopiptanthus mongolicus Maxim.,Atraphaxis bracteata A.Los.,Cal igonum mongolicum Mattei.,and Caragana microphylla Lam.).
文摘Biomass is among the most important state variables used to characterize ecosystems. Estimation of tree biomass involves the development of species-specific “allometric equations” that describe the relationship between tree biomass and tree diameter and/or height. While many allometric equations were developed for northern hemisphere and tropical species, rarely have they been developed for trees in arid ecosystems, limiting, amongst other things, our ability to estimate carbon stocks in arid regions. Acacia raddiana and A. tortilis are major components of savannas and arid regions in the Middle East and Africa, where they are considered keystone species. Using the opportunity that trees were being uprooted for land development, we measured height (H), north-south (C1) and east-west (C2) canopy diameters, stem diameter at 1.3 meters of the largest stem (D1.3 or DBH), and aboveground fresh and dry weight (FW and DW, respectively) of nine trees (n = 9) from each species. For A. tortilis only, we recorded the number of trunks, and measured the diameter of the largest trunk at ground level (D0). While the average crown (canopy) size (C1 + C2) was very similar among the two species, Acacia raddiana trees were found to be significantly taller than their Acacia tortilis counterparts. Results show that in the arid Arava (southern Israel), an average adult acacia tree has ~200 kg of aboveground dry biomass and that a typical healthy acacia ecosystem in this region, may include ~41 tons of tree biomass per km2. The coefficients of DBH (tree diameter at breast height) to biomass and wood volume, could be used by researchers studying acacia trees throughout the Middle East and Africa, enabling them to estimate biomass of acacia trees and to evaluate their importance for carbon stocks in their arid regions. Highlights: 1) Estimations of tree biomass in arid regions are rare. 2) Biomass allometric equations were developed for A. raddiana and A. tortilis trees. 3) Equations contribute to the estimation of carbon stocks in arid regions.
文摘Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences and the research group led by Prof.Ignacio Rodriguez-Iturbe from
基金Funding was provided by grants from the state Key Development Program for Basic Research(Grant No.2006CB400503)the KZCX3-SW-230 of the Chinese Academy of Sciences(CAS)and National Natural Science Foundation of China(Grant No.40675030).
文摘Based on a five-variable theoretical ecosystem model, the stability of equilibrium state and the nonlinear feature of the transition between a grassland state and a desert state are investigated. The approach of the conditional nonlinear optimal perturbations (CNOPs), which are the nonlinear generalization of the linear singular vectors (LSVs), is adopted. The numerical results indicate that the linearly stable grassland and desert states are nonlinearly unstable to large enough initial perturbations on the condition that the moisture index # satisfies 0.3126 〈 μ 〈 0.3504. The perturbations represent some kind of anthropogenic influence and natural factors. The results obtained by CNOPs, LSVs and Lyapunov vectors (LVs) are compared to analyze the nonlinear feature of the transition between the grassland state and the desert state. Besides this, it is shown that the five-variable model is superior to the three-variable model in providing more visible signals when the transitions occur.
基金supported by the Key Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-336)the National Natural Science Foundation of China (40771114)
文摘As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.
基金funded by the National Basic Research Program of China (2013CB429903)the National Natural Science Foundation of China (41201248, 31170496)
文摘Shrub presence has an important effect on the structuring of ground beetles in desert ecosystems. In this study, in order to determine how shrubs and different species influence ground beetle assemblages in a sandy desert scrubland dominated by two different shrub species, namely Calligonum mongolicum and Nitraria sphaerocarpa, we sampled the ground beetles using pitfall traps during spring, summer and autumn in 2012. At the community level, the activity density of the ground beetles was shown to be significantly higher under shrubs than in intershrub bare habitats in spring; but an opposite pattern occurred in autumn, suggesting the presence of sea- son-specific shrub effects on the activity density of the ground beetles. Meanwhile, at the trophic group level, the activity density and species richness of predators were significantly greater under shrubs than in intershrub bare habitats in spring, whereas an opposite trend occurred on the activity density in autumn. N. sphaerocarpa shrubs had a positive effect on the activity density of herbivores in the three seasons, and C. mongolicum shrubs had a positive effect on the activity density of detritivores in spring and autumn. At the species level, more Microdera sp. was captured under shrubs than in intershrub bare habitats in spring. During the same time, we also found that C. mongolicum shrubs had a positive effect on Blaps gobiensis in spring, Carabus sp. in autumn, and Tentyria sp. in spring and autumn, and N. sphaerocarpa shrubs had a positive effect on Cyphogenia chinensis, Sternoplax setosa in spring and summer, and Curculionidae sp. 1 in summer and autumn. The study results suggest that shrub presence, shrub species and season variation are important factors for ground beetle assemblages in this desert ecosystem, but the responses of beetles differed among trophic and taxonomic levels.
基金financed by the Oman’s Ministry of Agriculture and Fisheries, the University of Basel, the Polish National Centre of Science (N N304 061739 and DEC–2012/05/B/NZ8/ 00498)the Swiss National Science Foundation (130794 to A.W.)
文摘Arbuscular mycorrhizal fungi(AMF) are known to facilitate the growth and vigour of many plants, particularly in arid ecosystems. In a survey of AMF in a date palm plantation and two natural sites of a desert in Oman, we generated many single spore-derived cultures of AMF. We identified a number of these isolates based on spore morphotyping and molecular phylogenetic analysis using the sequence of the LSU-rDNA. Here, we presented the characteristics of four species of AMF recovered, namely Claroideoglomus drummondii, Diversispora aurantia, Diversispora spurca and Funneliformis africanum. The four species have been described previously, but for the Arabian Peninsula they are reported here for the first time. Our endeavor of isolation and characterization of some AMF habituated to arid sites of Arabia represents a first step towards application for environmental conservation and sustainable agriculture in this region.
基金Project supported by the National Natural Science Foundation of China (Nos. 40730105, 40501072 and 40673067)the National Key Basic Research Program (973 Program) of China (No. 2002CB412503)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-149)
文摘Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such waterlimited ecosystems, pulsed water inputs directly control the belowground processes through a series of soil drying and rewetting cycles. To investigate the effects of sporadic addition of water on soil CO2 effux, an artificial precipitation event (3 mm) was applied to a desert shrub ecosystem in the Mu Us Sand Land of the Ordos Plateau in China. Soil respiration rate increased 2.8 4.1 times immediately after adding water in the field, and then it returned to background level within 48 h. During the experiment, soil CO2 production was between 2 047.0 and 7 383.0 mg m^-2. In the shrubland, soil respiration responses showed spatial variations, having stronger pulse effects beneath the shrubs than in the interplant spaces. The spatial variation of the soil respiration responses was closely related with the heterogeneity of soil substrate availability. Apart from precipitation, soil organic carbon and total nitrogen pool were also identified as determinants of soil CO2 loss in desert ecosystems.
基金supported by the National Natural Science Foundation of China(41271265,31570498,31300411)the Science and Technology Projects in Gansu Province(1304NKCA135)the Foundation of China Scholarship Council
文摘Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China was analyzed using high-throughput amplicon pyrosequencing analysis. The sequences of the most abundant OUTs (Operational Taxonomic Units) in the sediment of Crescent Moon Spring were compared with the sequences of those most abundant OUTs of various origins from NCBI GenBank database to detect the origins of bacteria in the sediment of Crescent Moon Spring. Also, bacterial compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide were compared using cluster analysis to determine the possible factors affecting bacterial compositions. In total, 11,855 sequences were obtained and 30 phyla were identified. At the phylum level, the dominant phylum was Proteobacteria with α-Proteobacteria being the first dominant class and the second dominant phylum was Planctomycetes. Our finding that α-Proteobacteria being the first dominant class of Proteobacteria and Planctomycetes being the second dominant phyla are somewhat contradictory with reports from other desert lake sediments. This difference could be resulted from water hydration and conductivity, as well as oligotrophic conditions of Crescent Moon Spring. At the genus level, Rhodobacter, Caldilinea, Planctomyces, and Porphyrobacterwere the dominant genera in the sediment of Crescent Moon Spring. Comparisons on sequences of the most abundant OUTs (including OTU3615, OTU6535, and OTU6646) between sediment of Crescent Moon Spring and various origins from NCBI GenBank database indicate that the origins of bacteria in the sediment of Crescent Moon Spring are likely from the underground water. Furthermore, cluster analysis on comparisons of bacteria compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide shows that at regional scales, bacterial compositions may be mainly affected by geographical patterns, precipitation amounts, and pH values. Collectively, our results provide new knowledge on the bacterial diversity in desert lake ecosystems.
文摘Many studies focus on rodent community pattern and changing at present in the world, but most of them are conducted in small plots. Few studies investigated the rodent community classification and diversity in semi-desert and desert areas at regional scale, although some researchers started to study the change of animal community patterns on a large scale. We investigated rodent communities in desert, non-irrigated farming land and desert steppe of Inner Mongolia, covering an area of 380,000 km2 from May to August in 1988-1993 and in 1998-2003, respectively, in order to reveal the changing characteristics of zonal rodent communities. The community classification and diversity of rodents were analyzed in research areas. The results suggested that the communities could be classified in 9 zonal types. Spermophilus dauricus, Cricetulus longicaudatus and Eutamias sibiricus were dominant species in Community I;Phodopus roborovskii, Cricetulus barabansis and Cricetulus longicaudatus were dominant in Community II;Meriones unguiculatus, Phodopus roborovskii and Cricetulus longicaudatus were dominant in Community III;Allactaga sibirica, Allactaga bullata and Spermophilus dauricus were dominant in Community IV;Allactaga bullata, Dipus sagitta and Meriones unguiculatus were dominant in Community V;Meriones meridianus, Spermophilus dauricus and Allactaga bullata were dominant in Community VI;Allactaga sibirica, Allactaga bullata and Dipus sagitta were dominant in Community VII;Phodopus roborovskii, Dipus sagitta and Allactaga sibirica were dominant in Community VIII;Meriones meridianus, Dipus sagitta and Allactaga sibirica were dominant in Community IX. The community diversity and evenness analysis showed that the edge effect of community, the effect of disturbance and habitat fragmentation and scale effect were significantly correlated with community diversity in the semi-desert and desert regions. The ordinal results of 9 zonal rodent communities were in accordance with the results analyzed with similar community indices, showing the habitat change in the characteristics of the above-mentioned groups.
基金supported by the National Natural Science Foundation of China(31960359)the Ningxia Hui Autonomous Region Key Research and Development Project(2021BEG02005,2023BEG02049)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2020AAC03102,2023AAC03061)。
文摘Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies.
文摘植被生物量是全球碳循环的重要组成部分,是陆地生态系统与大气之间碳交换的重要环节,是定量研究全球气候变化与草地、荒漠生态系统之间的反馈调节作用等的基础。中国干旱半干旱区的草地、荒漠生态系统是重要的碳库类型,本文选取中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)中位于中国干旱半干旱区的2个草地生态系统观测研究站(海北站、内蒙古站)和5个荒漠生态系统类型观测研究站(鄂尔多斯站、阜康站、临泽站、奈曼站、沙坡头站)的典型生态系统,对其按照CERN生态系统长期观测规范开展长期观测获取的植被地上生物量的2005–2020年间生长季的月动态实测数据进行了收集整理与质量控制,并开展了样方原始调查数据到样地尺度观测数据的统计计算,生成了植被地上生物量数据集,可为中国干旱半干旱区草地和荒漠生态系统对全球气候变化响应及植被保育与可持续发展等研究提供地面观测数据支撑。