Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a...Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.展开更多
为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网...为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网络v2(deformable convolutional networks V2,DCN V2)提高模型对运动中小目标的学习能力;同时,增加上下文增强模块,提升对远距离小目标的识别能力。最后,在替换损失函数、提高边界框定位精度的同时,使用空间金字塔池化和上下文空间金字塔卷积分组模块,提高网络的感受野和特征表达能力。实验结果表明,所提算法在KITTI数据集小目标类别上平均识别精度达到了95.2%,相较于原始YOLO v5,算法总体平均识别精度提升了2.7%,对小目标的检测效果更佳,平均识别精度提升了3.1%,证明所提算法在道路小目标检测方面的有效性。展开更多
Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust a...Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust and accurate correspondences,we propose DSD-MatchingNet for local feature matching in this study.First,we develop a deformable feature extraction module to obtain multilevel feature maps,which harvest contextual information from dynamic receptive fields.The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence.Second,we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching,which enables our method to produce more accurate correspondences.Result Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark,as well as on the visual localization benchmark.Specifically,our method achieved 91.3%mean matching accuracy on the HPatches dataset and 99.3%visual localization recalls on the Aachen Day-Night dataset.展开更多
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
基金National Key Research and Development Program of China(No.2017YFC0405806)。
文摘Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.
基金Supported by the National Natural Science Foundation of China under Grants 61872241,62077037 and 62272298in part by Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102。
文摘Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust and accurate correspondences,we propose DSD-MatchingNet for local feature matching in this study.First,we develop a deformable feature extraction module to obtain multilevel feature maps,which harvest contextual information from dynamic receptive fields.The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence.Second,we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching,which enables our method to produce more accurate correspondences.Result Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark,as well as on the visual localization benchmark.Specifically,our method achieved 91.3%mean matching accuracy on the HPatches dataset and 99.3%visual localization recalls on the Aachen Day-Night dataset.