期刊文献+
共找到2,410篇文章
< 1 2 121 >
每页显示 20 50 100
Characteristics of the Deep Crustal Structure of the Greenland–Iceland–Faroe Ridge in the North Atlantic
1
作者 ZHANG Chunguan LI Fengyuan +3 位作者 ZHANG Qiang ZHANG Guoli HU Hongchuan YIN Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期87-89,共3页
The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridg... The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014). 展开更多
关键词 crustal thickness deep fault Moho surface gravity anomaly Greenland-Iceland-Faroe Ridge
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
2
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
Discovery and its significance of late Paleozoic radiolariansilicalite in ophiolitic melange of northeasternJiangxi deep fault belt 被引量:3
3
作者 赵崇贺 何科昭 +7 位作者 莫宣学 邰道乾 叶德隆 叶栴 林培英 毕先梅 郑伯让 冯庆来 《Chinese Science Bulletin》 SCIE EI CAS 1996年第8期667-670,共4页
Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especial... Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt 展开更多
关键词 NORTHEASTERN JIANGXI deep fault BELT ophiolitic MELANGE late PALEOZOIC radiolarian.
原文传递
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing 被引量:19
4
作者 Si-Yu Shao Wen-Jun Sun +2 位作者 Ru-Qiang Yan Peng Wang Robert X Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1347-1356,共10页
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need exp... Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. 展开更多
关键词 fault diagnosis deep learning deep beliefnetwork. RBM CLASSIFICATION
在线阅读 下载PDF
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
5
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 deep mining fault Microseism(MS) Stability
在线阅读 下载PDF
A DEEP SEISMIC REFLECTION PROFILE ACROSS ALTUN FAULT BELT 被引量:3
6
作者 Gao Rui 1, Liu Hongbin 2, Li Qiusheng 1,Li Pengwu 1, Yao Peiyi 1, Huang Dongding 3 (1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China,E\|mail: gaorui@cags.cn.net 2 Institute of Ge 《地学前缘》 EI CAS CSCD 2000年第S1期205-205,共1页
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute... Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance. 展开更多
关键词 deep seismic reflection probing Altun fault BELT TARIM b lock deep CRUST structure MOHO
在线阅读 下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
7
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
在线阅读 下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
8
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
在线阅读 下载PDF
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
9
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 fault Diagnosis ROLLING BEARING deep Auto-Encoder NETWORK CAPSO Algorithm Feature Extraction
在线阅读 下载PDF
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
10
作者 YU Gui-hua XU Xi-wei +6 位作者 ZHU Ai-lan MA Wen-tao DIAO Gui-ling ZHANG Si-chang ZHANG Xian-kang LIU Bao-jin SUN Zhen-guo 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
在线阅读 下载PDF
Deep- Seated Tectonic Activation of Tancheng-Lujiang Fault Zone and Its Control over Jiaodong Gold Concentrated Region, China
11
作者 Cai Xinping Zhang Baolin Institute of Geology, Chinese Academy of Sciences, Beijing 100029 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期55-57,共3页
A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle struct... A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle structural characteristics of the Jiaodong massif, the property, activation history and styles of the Tancheng Lujiang fault zone, as well as a series of accompanying tectono magmatic events. Prediction for further prospecting gold deposits in the area is also made. 展开更多
关键词 deep seated tectonic activation Tancheng Lujiang fault zone Jiaodong gold concentrated region.
在线阅读 下载PDF
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
12
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 fault Detection Cloud Computing Auto-Encoder SPARSE DENOISING deep Learning
在线阅读 下载PDF
超深层“断滩体”概念、地质模式及地震表征技术方法——以塔里木油田为例
13
作者 张银涛 常少英 +3 位作者 谢舟 罗枭 王孟修 杜一凡 《断块油气田》 北大核心 2025年第1期108-117,共10页
“断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐... “断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐岩“断滩体”地震刻画技术。研究结果表明:1)“断滩体”的形成机制为超深层灰岩台内滩体受主干断裂派生次序级网状断裂破碎作用改造形成。2)基于“断滩体”地质特征,采用波形指示反演识别滩体边界;利用地震子波分解、反射特征强化法识别低级序断裂;通过滩体与低级序断裂的融合,精细刻画出“断滩体”的边界及内部结构,是表征“断滩体”的有效手段。3)富满东部三维区鹰山组下段发育典型的“断滩体”,明确了“断滩体”圈闭范围,识别断滩体面积42.2 km^(2),勘探潜力较大。富东1井的成功突破,预示着富满油田新的控储模式的确立。超深层“断滩体”地震识别技术为其他地区类似储层的预测提供较好的借鉴意义。 展开更多
关键词 超深层 断滩体 台内滩 子波分解 低级序断裂
在线阅读 下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
14
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault Detection deep Learning Image Processing
在线阅读 下载PDF
基于多智能体深度强化学习的随机事件驱动故障恢复策略
15
作者 王冲 石大夯 +3 位作者 万灿 陈霞 吴峰 鞠平 《电力自动化设备》 北大核心 2025年第3期186-193,共8页
为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢... 为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢复优化目标,构建基于半马尔可夫的随机事件驱动故障恢复模型;利用多智能体深度强化学习算法对所构建的随机事件驱动模型进行求解。在IEEE 33节点配电网与Sioux Falls市交通网形成的电力交通耦合系统中进行算例验证,结果表明所提模型和方法在电力交通耦合网故障恢复中有着较好的应用效果,可实时调控由随机事件(故障维修和交通行驶)导致的故障恢复变化。 展开更多
关键词 随机事件驱动 故障恢复 深度强化学习 电力交通耦合网 多智能体
在线阅读 下载PDF
一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法
16
作者 伍章俊 许仁礼 +1 位作者 方刚 邵海东 《电子与信息学报》 北大核心 2025年第1期244-259,共16页
针对单传感器和单模态信号特征信息不足的问题,该文提出一种基于多模态融合的端到端深度聚类旋转机械多传感器故障诊断方法(EDCM-MFF)。首先,利用门控递归单元自编码模块提取多传感器故障信号的深度时序特征。然后,应用短时傅里叶变换(S... 针对单传感器和单模态信号特征信息不足的问题,该文提出一种基于多模态融合的端到端深度聚类旋转机械多传感器故障诊断方法(EDCM-MFF)。首先,利用门控递归单元自编码模块提取多传感器故障信号的深度时序特征。然后,应用短时傅里叶变换(STFT)将故障信号转换为时频图像,并通过卷积自编码器提取这些图像的深度空间特征。接着,设计了一种模态融合注意力机制,通过计算不同模态深度特征之间的亲和矩阵,实现模态特征的融合。最后,采用Kullback-Leibler(KL)散度聚类,以端到端方式实现故障类型的识别。实验结果显示,该方法在东南大学齿轮箱和轴承数据集上的识别准确率分别为99.16%和98.63%。与现有的无监督学习方法相比,所提方法能够更有效地实现多传感器和多模态的旋转机械故障诊断。 展开更多
关键词 旋转机械 故障诊断 多模态融合 深度聚类
在线阅读 下载PDF
基于Patches-CNN的模拟电路故障诊断
17
作者 吴玉虹 王建 《计算机工程与科学》 北大核心 2025年第1期35-44,共10页
深度学习在故障诊断中应用广泛,但目前基于深度学习的模拟电路故障诊断模型复杂度较高,难以在边缘设备上部署。针对该问题,为了进一步提高故障诊断精度,提出了一种简单且轻量化的Patches-CNN模拟电路故障诊断深度学习模型。首先,将输入... 深度学习在故障诊断中应用广泛,但目前基于深度学习的模拟电路故障诊断模型复杂度较高,难以在边缘设备上部署。针对该问题,为了进一步提高故障诊断精度,提出了一种简单且轻量化的Patches-CNN模拟电路故障诊断深度学习模型。首先,将输入的图像分割成patches,并通过Patches Embedding算子转换为词向量(tokens),作为ViT风格的同质结构的输入,利用轻量化算子GSConv进行特征提取和获取token之间的信息,可以有效地提高模型的故障诊断精度。其次,添加层归一化可以防止模型梯度爆炸和加快模型收敛,为了提升模型的非线性,采用GELU激活函数。最后,将Sallen-Key带通滤波电路和Four-Opamp双二阶高通滤波电路作为实验对象。实验结果表明,该模型可以实现故障的准确分类与定位。 展开更多
关键词 模拟电路 故障诊断 深度学习 同质结构 层归一化
在线阅读 下载PDF
基于知识图谱的钻井顶部驱动装置故障智能诊断方法
18
作者 陈冬 肖远山 +2 位作者 尹志勇 张彦龙 叶智慧 《天然气工业》 北大核心 2025年第2期125-135,共11页
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井... 钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。 展开更多
关键词 钻井装备 顶部驱动装置 故障诊断 深度学习 知识图谱 自然语言处理 命名实体识别 智能问答系统
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断
19
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
基于格拉姆角场和PCNN-GRU的换相失败诊断方法
20
作者 陈仕龙 俸春雨 +3 位作者 牛元有 彭程 毕贵红 赵四洪 《电力科学与工程》 2025年第1期13-22,共10页
高压直流输电作为一种高效的电力传输技术,其运行中的换相失败会导致直流电流迅速增加、直流电压急剧下降,对电网的安全稳定运行造成重大影响。针对换相失败,提出一种结合格拉姆角场(Gramian angular field,GAF)与并行卷积神经网络–门... 高压直流输电作为一种高效的电力传输技术,其运行中的换相失败会导致直流电流迅速增加、直流电压急剧下降,对电网的安全稳定运行造成重大影响。针对换相失败,提出一种结合格拉姆角场(Gramian angular field,GAF)与并行卷积神经网络–门控循环单元(Parallel convolutional neural network-gated recurrent unit,PCNN-GRU)的换相失败诊断方法。利用GAF将一维时间序列信号转换为二维图像特征图,保留信号的时序信息。再利用PCNN-GRU模型的卷积神经网络的特征提取能力和门控循环单元的时序特征处理能力,使模型学习更多的故障特征,提高模型的诊断性能。以永富直流输电系统为对象,实验结果表明该方法诊断精度为99.33%,有较强的多特征提取能力和时序特性分析能力,诊断性能强,响应及识别换相失败快速。 展开更多
关键词 高压直流输电 换相失败 格拉姆角场 PCNN-GRU 故障诊断 深度学习
在线阅读 下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部