This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
The storage layer within the Moxizhuang Oilfield in the Junggar Basin develops various types of interlayer barriers with significant differences in morphology and scale of development. In response to the issues of int...The storage layer within the Moxizhuang Oilfield in the Junggar Basin develops various types of interlayer barriers with significant differences in morphology and scale of development. In response to the issues of interlayer barriers affecting the formation of oil and gas reservoirs and controlling oil-water distribution, this study proposes precise classification and quantitative identification of interlayer barriers in the study area based on a fully connected neural network combined with grey relational analysis. Taking the second member of the Sangonghe Formation (J1S22) in the Moxizhuang Oilfield as an example, combined with previous research, this study statistically analyzes the lithology and logging response characteristics of three types of interlayer barriers in the study area. Based on differences in composition, lithology, and genesis, interlayer barrier types are classified. Sensitive logging data such as natural gamma, acoustic time difference, and resistivity are selected through crossover plots. Grey relational analysis is used to calculate comprehensive discrimination indicators for interlayer barriers. Combined with the fully connected neural network method, an interlayer barrier identification model is established, and model training is conducted to verify the accuracy of interlayer barrier identification. The results indicate that the interlayer barrier identification model based on a fully connected neural network can rapidly and accurately identify interlayer barriers and their types. Its application in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin has proven that the identification results of this method for interlayer barriers have a conformity rate exceeding 90% with core data, demonstrating excellent performance in interlayer barrier identification and proving the effectiveness of the model for interlayer barrier identification and prediction in this area. The research conclusions can provide theoretical guidance and technical reference for the identification and evaluation of interlayer barriers in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin.展开更多
Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external...Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.展开更多
Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower...Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.展开更多
Controlled by fluctuating paleoclimates and sedimentary environments,the organic and inorganic features of the Lucaogou Formation exhibit strong heterogeneity in the vertical profile,challenging conventional geologica...Controlled by fluctuating paleoclimates and sedimentary environments,the organic and inorganic features of the Lucaogou Formation exhibit strong heterogeneity in the vertical profile,challenging conventional geological interpretation.To elucidate the possible influence of heterogeneity on resource evaluation,a high-resolution sampling approach was applied to an 86.2 cm long core from the Lucaogou Formation of the Jimsar sag in the Junggar Basin.86 sets of samples were micro-drilled from the core and subjected to comparative Rock-Eval pyrolysis.Following the classical guidelines,the organic abundance,kerogen type,and maturity of source rocks were exhaustively analyzed.Experimental results revealed that organic richness and composition vary significantly under different sedimentary backgrounds,which in turn leads to differential hydrocarbon generation.The combination of hydrocarbon generation,transport,and expulsion results in peculiar patterns for hydrocarbon accumulation in the Lucaogou Formation.Laminated shales in the Lucaogou Formation serve as both hydrocarbon source rocks and reservoirs,with laminae being migration pathways.Organic-rich dolomites in the Lucaogou Formation have a considerable hydrocarbon-generating capacity and present the characteristics of self-generation and self-storage.However,massive mudstones act purely as hydrocarbon source rocks.展开更多
The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumul...The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.展开更多
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p...Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications.展开更多
As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and ...As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.展开更多
Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentratio...Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentration on the solid-state reaction process of the C_(3)BA_(3-y)F_(y)$(y=0,0.2,0.25,0.4,and 0.6)were investigated by the Rietveld/XRD quantitative phase analysis.The experimental results show that Fe-doping not only significantly improvs the synthesis of C_(3)BA_(3-y)F_(y)$,but also reduces the solid-state reaction potential energy barrier and then promots mineral formation.Nevertheless,the mineral begins to decompose when the Fe/Al ratio exceeds 2/13 and the calcination temperature exceeds 1300℃.The Ginstling equation is found to be the most appropriate kinetic model for the statistical fitting of C_(3)BA_(3-y)F_(y)$formation process,based on the mathematical model.It is observed that the apparent activation energy of C_(3)BA_(3-y)F_(y)$decreases and then increases with increasing Fe-doping concentration.展开更多
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bo...Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.展开更多
Three eusauropod teeth(SDUST-V1064,PMOL-AD00176,PMOL-ADt0005)are reported from the Lower Cretaceous Yixian Formation of Ningcheng,southeastern Inner Mongolia,China.Two of them(SDUST-V1064,PMOL-AD00176)are assigned to ...Three eusauropod teeth(SDUST-V1064,PMOL-AD00176,PMOL-ADt0005)are reported from the Lower Cretaceous Yixian Formation of Ningcheng,southeastern Inner Mongolia,China.Two of them(SDUST-V1064,PMOL-AD00176)are assigned to early-diverging titanosauriforms in having slightly mesiodistal expansion at the base of the tooth crown,a slenderness index value>2.0 and<4.0,and D-shaped cross section.Furthermore,SDUST-V1064 and PMOL-AD00176 are referred as an Euhelopus-like titanosauriform on the basis of having a sub-circular boss on the lingual surface and an asymmetrical crown-root margin which slants apically,respectively.CT scan data of SDUST-V1064 reveals new dental information of early-diverging titanosauriforms,for example,the enamel on the labial side thicker than that on the lingual side,an enamel/dentine ratio of 0.26 and a boss present on the lingual side of the dentine of the crown.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o...Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Never...During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
文摘The storage layer within the Moxizhuang Oilfield in the Junggar Basin develops various types of interlayer barriers with significant differences in morphology and scale of development. In response to the issues of interlayer barriers affecting the formation of oil and gas reservoirs and controlling oil-water distribution, this study proposes precise classification and quantitative identification of interlayer barriers in the study area based on a fully connected neural network combined with grey relational analysis. Taking the second member of the Sangonghe Formation (J1S22) in the Moxizhuang Oilfield as an example, combined with previous research, this study statistically analyzes the lithology and logging response characteristics of three types of interlayer barriers in the study area. Based on differences in composition, lithology, and genesis, interlayer barrier types are classified. Sensitive logging data such as natural gamma, acoustic time difference, and resistivity are selected through crossover plots. Grey relational analysis is used to calculate comprehensive discrimination indicators for interlayer barriers. Combined with the fully connected neural network method, an interlayer barrier identification model is established, and model training is conducted to verify the accuracy of interlayer barrier identification. The results indicate that the interlayer barrier identification model based on a fully connected neural network can rapidly and accurately identify interlayer barriers and their types. Its application in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin has proven that the identification results of this method for interlayer barriers have a conformity rate exceeding 90% with core data, demonstrating excellent performance in interlayer barrier identification and proving the effectiveness of the model for interlayer barrier identification and prediction in this area. The research conclusions can provide theoretical guidance and technical reference for the identification and evaluation of interlayer barriers in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin.
基金supported by China Agriculture Research System of MOF and MARA(Grant No.CARS23-B10)The Major Science and Technology Projects in Hainan Province(Grant No.ZDKJ2021005)+1 种基金Key R&D projects in Shandong Province(Grant No.LJNY202106)Central Public-interest Scientific Institution Basal Research Fund(Grant No.IVF-BRF2023006)。
文摘Grafting is an effective technique for increasing the resistance of vegetables to biotic and abiotic stresses.It has been widely applied to produce solanaceous and melon vegetables.Temperature is an important external factor affecting graft formation.However,the molecular mechanism by which external ambient temperature affects tomato graft formation remains unclear.In this study,we demonstrated that elevating ambient temperature during grafting to 35℃ for more than 24 h after grafting accelerated vascular reconnection.We generated self-or heterografted combinations between phyB1B2 and pif4 loss-of-function mutant and wild-type plants,and were mutants unresponsive to graft formation at elevated ambient temperature.In addition,elevated ambient temperature induced SlPIF4 expression during grafting.SlPIF4 directly binds the promoters of auxin biosynthesis genes SlYUCCAs and activates their expression.Further investigation revealed auxin accumulation in the graft junction under elevated ambient temperature.The results illuminate the mechanism by which the PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature.
基金supported by the National Natural Science Foundation of China(32160681 and 32060663)the National Guidance Foundation for Local Science and Technology Development of China(2023-009)+1 种基金the Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]YB132)the Foundation of Postgraduate of Guizhou Province,China(YJSKYJJ[2021]057)。
文摘Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.
基金supported by the National Natural Science Foundation of China(No.U22B6004)the Basic Research and Strategic Reserve Technology Research Project of CNPC(No.2020D-5008-01)the Scientific Research and Technology Development Project of PetroChina Exploration&Development Research Institute(Nos.2021DJ0104 and 2021DJ1808)。
文摘Controlled by fluctuating paleoclimates and sedimentary environments,the organic and inorganic features of the Lucaogou Formation exhibit strong heterogeneity in the vertical profile,challenging conventional geological interpretation.To elucidate the possible influence of heterogeneity on resource evaluation,a high-resolution sampling approach was applied to an 86.2 cm long core from the Lucaogou Formation of the Jimsar sag in the Junggar Basin.86 sets of samples were micro-drilled from the core and subjected to comparative Rock-Eval pyrolysis.Following the classical guidelines,the organic abundance,kerogen type,and maturity of source rocks were exhaustively analyzed.Experimental results revealed that organic richness and composition vary significantly under different sedimentary backgrounds,which in turn leads to differential hydrocarbon generation.The combination of hydrocarbon generation,transport,and expulsion results in peculiar patterns for hydrocarbon accumulation in the Lucaogou Formation.Laminated shales in the Lucaogou Formation serve as both hydrocarbon source rocks and reservoirs,with laminae being migration pathways.Organic-rich dolomites in the Lucaogou Formation have a considerable hydrocarbon-generating capacity and present the characteristics of self-generation and self-storage.However,massive mudstones act purely as hydrocarbon source rocks.
基金financially supported by the Norwegian Ferroalloy Producers Research Association (FFF) and the Research Council of Norway through KSP project 326581 Recursive。
文摘The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52271105)。
文摘Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications.
基金financial support from the National Natural Science Foundation of China(Nos.52434006,52374151,and 51927808)。
文摘As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.
基金Funded by the National Key Research and Development Program of China(2021YFB3802002)the National Natural Science Foundation of China(Nos.52172021 and U22A20126)+4 种基金the Science Foundation for Excellent Young Scholars of Shandong Province(No.ZR2023YQ041)the Natural Science Foundation of Shandong Province(ZR2021ME123)the Taishan Scholars Program(No.tsqn202306224)the Science and Technology Innovation Support Plan for Young Researchers in Institutes of Higher Education in Shandong(No.2019KJA017)the'111 Center'。
文摘Calcium-barium sulfo-ferritealuminate(C_3BA_(3-y)F_(y)$)was synthesized by doping Ba-bearing calcium sulphoaluminate(C_3BA_3$)with Fe^(3+).The effects of calcination temperature,holding time and Fe-doping concentration on the solid-state reaction process of the C_(3)BA_(3-y)F_(y)$(y=0,0.2,0.25,0.4,and 0.6)were investigated by the Rietveld/XRD quantitative phase analysis.The experimental results show that Fe-doping not only significantly improvs the synthesis of C_(3)BA_(3-y)F_(y)$,but also reduces the solid-state reaction potential energy barrier and then promots mineral formation.Nevertheless,the mineral begins to decompose when the Fe/Al ratio exceeds 2/13 and the calcination temperature exceeds 1300℃.The Ginstling equation is found to be the most appropriate kinetic model for the statistical fitting of C_(3)BA_(3-y)F_(y)$formation process,based on the mathematical model.It is observed that the apparent activation energy of C_(3)BA_(3-y)F_(y)$decreases and then increases with increasing Fe-doping concentration.
基金supported in part by National Natural Science Foundation of China(32271364 & 31971240)Interdisciplinary innovation project from West China Hospital of Stomatology, Sichuan University(RD-03-202305)。
文摘Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
基金supported by the Scientific Research Foundation of Shenyang Normal University(Grant No.BS202207)Program for Innovative Research Team of Excellent Talents in University of Shandong Province(Grant No.2019KJH004)+3 种基金Taishan Scholar Program of Shandong Province(Grant No.tsqn201812070)Educational Department of Liaoning Province(Grant No.JYTQN2023422)Shandong Provincial Natural Science Foundation(Grant No.ZR2017MD031)the National Natural Science Foundation of China(Grant Nos.41972025,41688103,42161134003).
文摘Three eusauropod teeth(SDUST-V1064,PMOL-AD00176,PMOL-ADt0005)are reported from the Lower Cretaceous Yixian Formation of Ningcheng,southeastern Inner Mongolia,China.Two of them(SDUST-V1064,PMOL-AD00176)are assigned to early-diverging titanosauriforms in having slightly mesiodistal expansion at the base of the tooth crown,a slenderness index value>2.0 and<4.0,and D-shaped cross section.Furthermore,SDUST-V1064 and PMOL-AD00176 are referred as an Euhelopus-like titanosauriform on the basis of having a sub-circular boss on the lingual surface and an asymmetrical crown-root margin which slants apically,respectively.CT scan data of SDUST-V1064 reveals new dental information of early-diverging titanosauriforms,for example,the enamel on the labial side thicker than that on the lingual side,an enamel/dentine ratio of 0.26 and a boss present on the lingual side of the dentine of the crown.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金the financial support from the National Natural Science Foundation of China(42172151,42090025,41811530094,and 41625009)the China Postdoctoral Science Foundation(2021M690204)the National Key Research and Development Program(2019YFA0708504&2023YFF0806200)。
文摘Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Funding for this project was provided by the China Geological Survey Project(Grant Nos.DD20230316 and DD20190099)Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202).
文摘During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.