Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering...Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
The Cold-Inducible RNA-Binding Protein (CIRBP) family plays a pivotal role in cellular stress responses and tumorigenesis. Recent studies have increasingly highlighted the expression alterations of CIRBP family member...The Cold-Inducible RNA-Binding Protein (CIRBP) family plays a pivotal role in cellular stress responses and tumorigenesis. Recent studies have increasingly highlighted the expression alterations of CIRBP family members across various cancer types and their potential molecular mechanisms. This review provides a comprehensive overview of the structural characteristics and functions of the CIRBP family, alongside their expression profiles in tumors and the regulatory molecular mechanisms involved. By synthesizing current knowledge, this review aims to offer new insights and directions for future cancer therapies, emphasizing the importance of CIRBP proteins in oncological research.展开更多
On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthqu...On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau, where faults are highly active and the geological structure is complex. In this study, we utilized methods such as relocation, focal mechanism solutions, and earthquake rupture processes to describe seismogenic faults. The results indicated that the majority of aftershocks occurred at a depth of 12 km. The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km. Various geophysical methods exhibited a high degree of consistency in depth exploration. Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction, primarily through unilateral rupture. The main shock was a reverse thrust event with a small dextral strike-slip component. In this study, more regional data, such as previous GPS observations, field geological observations, and the distributions of the primary stress states in the region, were also incorporated. We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults. The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas, accompanied by some landslides, leading to this catastrophic earthquake event. In this article, the activity relationships among the 2022 M_(s) 6.9 Menyuan earthquake, the 2019 M_(s) 5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed. This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.展开更多
Hosted by China National Institute of Standardization(CNIS),the Inaugural Ceremony of the National Collaboration Mechanism for Standardization Research Institutes and the 4th Roundtable on Standardization Reform and D...Hosted by China National Institute of Standardization(CNIS),the Inaugural Ceremony of the National Collaboration Mechanism for Standardization Research Institutes and the 4th Roundtable on Standardization Reform and Development were held in Beijing on November 29,2024,to implement the National Standardization Development Outline and establish a standardization science and technology system with the comprehensive standardization research institute at the national level as the leader,and standardization research institutes at the industrial,regional and local levels as the mainstay.展开更多
Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and ...Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and the intrinsic conflicts between strength and ductility were overcome via composition optimization and recrystallization.The causes of the superior strength-ductility synergy were investigated in terms of their deformation mechanism and dislocation behavior.The results show that the strength improvement can be attributed to the deformation mechanism transition caused by local chemical fluctuations and lattice distortion.Specifically,the slip band widths decrease after Mo addition,and the measured slip traces in the fracture samples are associated with high-order{112}and{123}slip planes.Furthermore,the grain refinement achieved via recrystallization promotes multi-slip system activation and shortens the slip-band spacing,which reduces the stress concentration and inhibits crack source formation,thereby allowing the alloy to ensure sufficient ductility.Consequently,the Ti_(35)Zr_(35)Nb_(20)Mo_(10)alloy annealed at 900℃ exhibits high yield strength and elongation.These findings provide a new strategy for designing high-strength RMPEAs and addressing room-temperature brittleness.展开更多
Polyethylene glycol(PEG)with different chains was used to modify epoxy asphalt.Molecular models of PEG⁃modified epoxy asphalt were developed using molecu⁃lar simulations(MS).The thermodynamic and mechanical properties...Polyethylene glycol(PEG)with different chains was used to modify epoxy asphalt.Molecular models of PEG⁃modified epoxy asphalt were developed using molecu⁃lar simulations(MS).The thermodynamic and mechanical properties of PEG⁃modified epoxy asphalt were analyzed,and its toughening mechanisms were explored.A method based on the Dijkstra algorithm was proposed to evaluate ep⁃oxy asphalt crosslinked networks.The results show that the introduction of PEG chains into epoxy asphalt can lower the glass transition temperature and enhance its toughness be⁃cause of the extended length of the PEG chains,which can in⁃crease the free volume and improve the mobility of the epoxy resin in the epoxy asphalt.The crosslinked network quantita⁃tive evaluation method based on the Dijkstra algorithm can ef⁃fectively evaluate the distribution of epoxy asphalt crosslink⁃ing bonds,providing further explanation of the toughening mechanism of PEG⁃modified epoxy asphalt.The feasibility of designing and screening epoxy asphalt materials by MS is verified,and a guide for toughening mechanism research of epoxy asphalt at the molecular level is provided.展开更多
Advances in genomics,proteomics,and metabolomics have revealed associations between specific microbiota species in health and disease.However,the precise mechanism(s)of action for many microbiota species and molecules...Advances in genomics,proteomics,and metabolomics have revealed associations between specific microbiota species in health and disease.However,the precise mechanism(s)of action for many microbiota species and molecules have not been fully elucidated,limiting the development of microbiota-based diagnostics and therapeutics.In this Review,we highlight innovative chemical and genetic approaches that are enabling the dissection of microbiota mechanisms and providing causation in health and disease.Although specific microbiota molecules and mechanisms have begun to emerge,new approaches are still needed to go beyond phenotypic associations and translate microbiota discoveries into actionable targets and therapeutic leads to prevent and treat diseases.展开更多
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati...In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.展开更多
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
With the continuous advancement of cancer treatment methods, plasma combined with drug therapy has garnered widespread attention as an emerging therapeutic strategy. This paper elaborates on the generation and charact...With the continuous advancement of cancer treatment methods, plasma combined with drug therapy has garnered widespread attention as an emerging therapeutic strategy. This paper elaborates on the generation and characteristics of plasma, as well as its mechanisms of action on cancer cells when used alone, including the production of reactive oxygen and nitrogen species, and damage to cancer cell membranes, and organelles. It emphasizes the synergistic mechanisms observed when plasma is combined with various anticancer drugs (e.g., chemotherapeutic agents, targeted drugs, and immunotherapies). The analysis focuses on enhancing drug uptake, promoting the activation of drug action targets, and improving the tumor microenvironment. These insights provide a theoretical basis for optimizing plasma-drug combination therapy for cancer.展开更多
Urban traffic is a complex system composed of users,drivers,vehicles,roads,the environment,and information and management strategies,characterized by dynamics,randomness,openness,and complexity.Traditional traffic sci...Urban traffic is a complex system composed of users,drivers,vehicles,roads,the environment,and information and management strategies,characterized by dynamics,randomness,openness,and complexity.Traditional traffic science and engineering research usually focuses on specific traffic subsystems[1,2],such as drivers(i.e.,driving behavior),vehicles(i.e.,traffic flow),or traffic control(i.e.,signal systems),and significant progress has been achieved in these areas.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on met...The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.展开更多
The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation ...The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation have not been fully elucidated yet.By correlating systematic characterization results with catalytic performance,the open Zr species,i.e.,Zr(OH)(OSi)_(3)moieties,were identified as the active site over the Zr/MFI-BM catalysts for the catalytic transformation of ethanol-acetaldehyde into 1,3-BD.In conjunction with controlled experiments and theory calculations,ethanol and acetaldehyde are proposed to synergistically co-adsorb on the Zr(OH)(OSi)_(3)species in a bi-molecular mode,which assists the acetaldehyde condensation and accelerates the critical Meerwein-Ponndorf-Verley-Oppenauer reduction,and accordingly promotes 1,3-BD formation.These findings will stimulate the search towards new metal-zeolite combinations for efficient production of value-added 1,3-BD via biomass-derived ethanol and beyond.展开更多
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.
基金National Key Research and Development Program of China(2022YFB3708500,2023YFB3611000)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2020ZZ109)。
文摘Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
文摘The Cold-Inducible RNA-Binding Protein (CIRBP) family plays a pivotal role in cellular stress responses and tumorigenesis. Recent studies have increasingly highlighted the expression alterations of CIRBP family members across various cancer types and their potential molecular mechanisms. This review provides a comprehensive overview of the structural characteristics and functions of the CIRBP family, alongside their expression profiles in tumors and the regulatory molecular mechanisms involved. By synthesizing current knowledge, this review aims to offer new insights and directions for future cancer therapies, emphasizing the importance of CIRBP proteins in oncological research.
基金funded by the National Natural Science Foundation of China (Grant No. 42304072)。
文摘On December 18, 2023, an M_(s) 6.2 earthquake jolted Jishishan County in the Linxia Hui Autonomous Prefecture in Northwest China's Gansu Province, causing substantial casualties and building collapses. The earthquake occurred in the Qilian Block on the northeastern border of the Qinghai-Tibet Plateau, where faults are highly active and the geological structure is complex. In this study, we utilized methods such as relocation, focal mechanism solutions, and earthquake rupture processes to describe seismogenic faults. The results indicated that the majority of aftershocks occurred at a depth of 12 km. The centroid depth of the main shock and the depth of the maximum rupture point during the rupture process were also 12 km. Various geophysical methods exhibited a high degree of consistency in depth exploration. Aftershocks were distributed mainly to the west and north of the main shock and extended in the NNW direction, primarily through unilateral rupture. The main shock was a reverse thrust event with a small dextral strike-slip component. In this study, more regional data, such as previous GPS observations, field geological observations, and the distributions of the primary stress states in the region, were also incorporated. We inferred that the main shock was triggered by the main fault at the northern margin of the Lajishan Fault and that the movement of the main fault also activated some secondary faults. The compressive forces on both sides of the Lajishan Fault Zone led to the uplift of mountain areas, accompanied by some landslides, leading to this catastrophic earthquake event. In this article, the activity relationships among the 2022 M_(s) 6.9 Menyuan earthquake, the 2019 M_(s) 5.7 Xiahe earthquake,and the Jishishan earthquake under the action of regional stress are also discussed. This study provides additional evidence and new ideas for exploring the seismogenic process of the Lajishan Fault Zone and has implications for future in-depth research on underground activity in this region.
文摘Hosted by China National Institute of Standardization(CNIS),the Inaugural Ceremony of the National Collaboration Mechanism for Standardization Research Institutes and the 4th Roundtable on Standardization Reform and Development were held in Beijing on November 29,2024,to implement the National Standardization Development Outline and establish a standardization science and technology system with the comprehensive standardization research institute at the national level as the leader,and standardization research institutes at the industrial,regional and local levels as the mainstay.
基金supported by the National Key Research and Development Program of China(No.2022YFF0609000)the National Natural Science Foundation of China(Nos.52171034 and 52101037)the Postdoctoral Fellowship Program of CPSF(No.GZB20230944).
文摘Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and the intrinsic conflicts between strength and ductility were overcome via composition optimization and recrystallization.The causes of the superior strength-ductility synergy were investigated in terms of their deformation mechanism and dislocation behavior.The results show that the strength improvement can be attributed to the deformation mechanism transition caused by local chemical fluctuations and lattice distortion.Specifically,the slip band widths decrease after Mo addition,and the measured slip traces in the fracture samples are associated with high-order{112}and{123}slip planes.Furthermore,the grain refinement achieved via recrystallization promotes multi-slip system activation and shortens the slip-band spacing,which reduces the stress concentration and inhibits crack source formation,thereby allowing the alloy to ensure sufficient ductility.Consequently,the Ti_(35)Zr_(35)Nb_(20)Mo_(10)alloy annealed at 900℃ exhibits high yield strength and elongation.These findings provide a new strategy for designing high-strength RMPEAs and addressing room-temperature brittleness.
基金The Major Science and Technology Project of Nan⁃jing(No.202209012)the Postgraduate Research and Practice Innova⁃tion Program of Jiangsu Province(No.KYCX22⁃0277).
文摘Polyethylene glycol(PEG)with different chains was used to modify epoxy asphalt.Molecular models of PEG⁃modified epoxy asphalt were developed using molecu⁃lar simulations(MS).The thermodynamic and mechanical properties of PEG⁃modified epoxy asphalt were analyzed,and its toughening mechanisms were explored.A method based on the Dijkstra algorithm was proposed to evaluate ep⁃oxy asphalt crosslinked networks.The results show that the introduction of PEG chains into epoxy asphalt can lower the glass transition temperature and enhance its toughness be⁃cause of the extended length of the PEG chains,which can in⁃crease the free volume and improve the mobility of the epoxy resin in the epoxy asphalt.The crosslinked network quantita⁃tive evaluation method based on the Dijkstra algorithm can ef⁃fectively evaluate the distribution of epoxy asphalt crosslink⁃ing bonds,providing further explanation of the toughening mechanism of PEG⁃modified epoxy asphalt.The feasibility of designing and screening epoxy asphalt materials by MS is verified,and a guide for toughening mechanism research of epoxy asphalt at the molecular level is provided.
文摘Advances in genomics,proteomics,and metabolomics have revealed associations between specific microbiota species in health and disease.However,the precise mechanism(s)of action for many microbiota species and molecules have not been fully elucidated,limiting the development of microbiota-based diagnostics and therapeutics.In this Review,we highlight innovative chemical and genetic approaches that are enabling the dissection of microbiota mechanisms and providing causation in health and disease.Although specific microbiota molecules and mechanisms have begun to emerge,new approaches are still needed to go beyond phenotypic associations and translate microbiota discoveries into actionable targets and therapeutic leads to prevent and treat diseases.
文摘In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
文摘With the continuous advancement of cancer treatment methods, plasma combined with drug therapy has garnered widespread attention as an emerging therapeutic strategy. This paper elaborates on the generation and characteristics of plasma, as well as its mechanisms of action on cancer cells when used alone, including the production of reactive oxygen and nitrogen species, and damage to cancer cell membranes, and organelles. It emphasizes the synergistic mechanisms observed when plasma is combined with various anticancer drugs (e.g., chemotherapeutic agents, targeted drugs, and immunotherapies). The analysis focuses on enhancing drug uptake, promoting the activation of drug action targets, and improving the tumor microenvironment. These insights provide a theoretical basis for optimizing plasma-drug combination therapy for cancer.
基金partially supported by the National Natural Science Foundation of China(72288101 and 72242102)。
文摘Urban traffic is a complex system composed of users,drivers,vehicles,roads,the environment,and information and management strategies,characterized by dynamics,randomness,openness,and complexity.Traditional traffic science and engineering research usually focuses on specific traffic subsystems[1,2],such as drivers(i.e.,driving behavior),vehicles(i.e.,traffic flow),or traffic control(i.e.,signal systems),and significant progress has been achieved in these areas.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金supported by the National Natural Science Foundation of China(61772179)Hunan Provincial Natural Science Foundation of China(2022JJ50016,2023JJ50095)+1 种基金the Science and Technology Plan Project of Hunan Province(2016TP1020)Double First-Class University Project of Hunan Province(Xiangjiaotong[2018]469,[2020]248).
文摘The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.
文摘The catalytic synthesis of 1,3-butadiene(1,3-BD)from bio-based ethanol offers an alternative and sustainable process beyond petroleum.However,the intrinsic active sites and corresponding mechanism of 1,3-BD formation have not been fully elucidated yet.By correlating systematic characterization results with catalytic performance,the open Zr species,i.e.,Zr(OH)(OSi)_(3)moieties,were identified as the active site over the Zr/MFI-BM catalysts for the catalytic transformation of ethanol-acetaldehyde into 1,3-BD.In conjunction with controlled experiments and theory calculations,ethanol and acetaldehyde are proposed to synergistically co-adsorb on the Zr(OH)(OSi)_(3)species in a bi-molecular mode,which assists the acetaldehyde condensation and accelerates the critical Meerwein-Ponndorf-Verley-Oppenauer reduction,and accordingly promotes 1,3-BD formation.These findings will stimulate the search towards new metal-zeolite combinations for efficient production of value-added 1,3-BD via biomass-derived ethanol and beyond.