Background: In-hospital mortality is a key indicator of the quality of care. Studies so far have demonstrated the influence of patient and hospital-related factors on in-hospital mortality. Currently, new variables, s...Background: In-hospital mortality is a key indicator of the quality of care. Studies so far have demonstrated the influence of patient and hospital-related factors on in-hospital mortality. Currently, new variables, such as components of metabolic syndrome as comorbid conditions, are being incorporated as independent risk factors. We aimed to identify which individual, clinical and hospital characteristics are related to hospital mortality. Objectives: Demonstrate that the Cox proportional hazard model is not appropriate for the analysis of hospital mortality data when diagnostic-related groups are incorporated in the covariate structure. Methods: A retrospective single-center observational study design was used. Sampling was conducted between January 2016 and December 2018. Patients over 10 years, admitted to the emergency department with a precited stay of at least 1 hour were included. Multivariate Cox regression for survival data analyses was employed to analyze the data. Results: The sample consisted of 5897 patients. The mean age of all patients was 32.21 ± 0.29 years old, and the mean length of stay (LOS) was 9.47 ± 0.16 hours. We also categorized patients according to five Diagnosis Related Groups (DGR). Among the patients,1308 suffered from acute leukemia, 1127 had endocrine diseases, 1173 with kidney diseases, and 1016 had respiratory problems. At least one component of metabolic syndrome was present in 27.5% of the patients. During the observation period, 2299 (39%) died in hospital, and 3598 (61%) were discharged alive. We used the multivariate Cox regression non-proportional hazard model to evaluate the joint effect of these factors on the “Length of Stay” or LOS (the dependent variable of Cox regression). Age at admission, the presence of metabolic syndrome, and the DRG were significantly associated with the LOS.展开更多
Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-spec...Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.展开更多
This study has provided a starting point for defining and working with Cox models in respect of multivariate modeling. In medical researches, there may be situations, where several risk factors potentially affect pati...This study has provided a starting point for defining and working with Cox models in respect of multivariate modeling. In medical researches, there may be situations, where several risk factors potentially affect patient prognosis, howbeit, only one or two might predict patient’s predicament. In seeking to find out which of the risk factors contribute the most to the survival times of patients, there was the need for researchers to adjust the covariates to realize their impact on survival times of patients. Aside the multivariate nature of the covariates, some covariates might be categorical while others might be quantitative. Again, there might be cases where researchers need a model that has <span style="font-family:Verdana;">the capability of extending survival analysis methods to assessing simulta</span><span style="font-family:Verdana;">neously the effect of several risk factors on survival times. This study unveiled the Cox model as a robust technique which could accomplish the aforementioned cases.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">An investigation meant to evaluate the ITN-factor vis-à-vis its </span><span style="font-family:Verdana;">contribution towards death due to Malaria was exemplified with the Cox model. Data were taken from hospitals in Ghana. In doing so, we assessed hospital in-patients who reported cases of malaria (origin state) to time until death or censoring (destination stage) as a result of predictive factors (exposure to the malaria parasites) and some socioeconomic variables. We purposefully used Cox models to quantify the effect of the ITN-factor in the presence of other risk factors to obtain some measures of effect that could describe the rela</span><span style="font-family:Verdana;">tionship between the exposure variable and time until death adjusting for</span><span style="font-family:Verdana;"> other variables. PH assumption holds for all three covariates. Sex of patient was insignificant to deaths due to malaria. Age of patient and user status </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> both significant. The magnitude of the coefficient (0.384) of ITN user status depicts its high contribution to the variation in the dependent variable.</span>展开更多
Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict o...Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model positive stochastic dependences only with the general assumption that the underlying two marginal random variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general characterization of bivariate probability distributions that may play similar role as the copula methodology. Examples of reliability and biomedical applications are given.展开更多
OBJECTIVE To retrospectively analyze clinical data of patientsfrom our hospital who underwent radical surgery for esophagealcarcinoma and for adenocarcinoma of the gastric cardia,as well asto investigate prognostic fa...OBJECTIVE To retrospectively analyze clinical data of patientsfrom our hospital who underwent radical surgery for esophagealcarcinoma and for adenocarcinoma of the gastric cardia,as well asto investigate prognostic factors affecting the long-term survival ofthe patients.METHODS Data from the patients eligible for our study,admitted to the 4th Hospital of Hebei Medical University fromJanuary 1996 to December 2004,were randomized,and 12distinctive clinicopathologic factors influencing the survival rateof those who underwent radical surgery for esophageal carcinomaor carcinoma of the gastric cardia were collected.Univariate andmultivariate analysis of these individual variables were performedusing the Cox proportional hazard model.RESULTS It was shown by univariate analysis that age,tumorsize,pathologic type,lymph node status,TNM staging,depthof infiltration and encroachment into local organs,etc.,were thefactors that markedly influenced the prognosis of patients(P<0.01).Multivariate analysis showed that pathologic type,numberof the lymph node metastases,involvement of local organs,andTNM staging were independent prognostic factors(P<0.05).CONCLUSION The independent factors influencing theprognosis of patients with esophageal cancer and carcinoma ofthe gastric cardia include pathologic type,number of lymph nodemetastases,involvement of local organs and TNM staging.Themain prognostic factors affecting the patient's survival are patientage,tumor size and depth of infiltration.In addition,patients withinvolvement of the local organs have a worse prognosis,and theyshould be closely followed up.展开更多
The aim of study was to evaluate clinical characteristics, social support and the association with the prognosis of breast cancer patients. A total of 204 participants were followed from 2003 until the end of 2008. In...The aim of study was to evaluate clinical characteristics, social support and the association with the prognosis of breast cancer patients. A total of 204 participants were followed from 2003 until the end of 2008. Information about patients with breast cancer was submitted by investigators. Data were analyzed by Cox’s proportional hazard model. The clinical staging of breast cancer we used was the TNM classification. A 'T' score is based upon the size and/or extent of invasion. The 'N' score indicates the extent of lymph node involvement. Age at diagnose was associated with protective factors (HR=0.972;95%CI (0.834-1.130)), T staging (HR=2.075;95%CI (1.424-3.022)), N staging (HR=1.513;95%CI (1.066-2.148)), were associated with risk factor. Two survival graphs of nodes with negative effects by histology and nodes with positive effects by histology was analyzed by log-rank test, there was statistically significant relationship between two survival graphs (χ2 =136.8467, p <.0001). Age at diagnoses, Clinical stage tumor and node could contribute to the development of breast cancer and disease free survival in Chinese women.展开更多
Early age at first sexual intercourse comes with many negative sexual outcomes namely: having unprotected sex on first sexual intercourse, condom misuse, high rate of sexually transmitted infections (STIs), teenage pr...Early age at first sexual intercourse comes with many negative sexual outcomes namely: having unprotected sex on first sexual intercourse, condom misuse, high rate of sexually transmitted infections (STIs), teenage pregnancy, increased number of sexual partners, etc. In this paper, we considered some socio-demographic and cultural factors and their relationship with age at first sexual intercourse so as to reduce the numerous negative sexual outcomes of early age at first sexual intercourse using the 2018 Nigerian Demographic and Health Survey data. The analysis was made using the Cox proportional hazard model and the Kaplan-Meier plot. The result shows that some respondents started having their first sexual intercourse at the age of 8 years and about 54.4% of the respondents had their first sexual intercourse before age 17 years. The median age of first sexual intercourse is 16 years which implies that about 50% of the respondents had their first sexual intercourse on or before their 16th birthday. Education, religion, region and residence significantly affects the age of first sexual intercourse while circumcision has no significant effect.展开更多
Mortality rate of gastric cancer is about 20.93/100000 which is the highest malignancy in China. The scientist of our country are at present interested in studying the postoperative survival model by multivariate anal...Mortality rate of gastric cancer is about 20.93/100000 which is the highest malignancy in China. The scientist of our country are at present interested in studying the postoperative survival model by multivariate analysis method just as stepwise regression model. The proportional hazard model initiated by Cox (1972) is more advanced than other regression method which is unneccessary to suppose the distribution of survival time and easy to analyse censoring data (the latter is difficult). This paper presented the first time application of Cox model in survival analysis of gastric cancer in China. The survival analysis system (SAS-Ⅰ) software complied by the author includes multivariate anlysis by Cox model, PV analysis and estimation of survival function which could provide useful information to surgeon for treatment of cancer patients.展开更多
<strong>Background: </strong><span style="font-family:""><span style="font-family:Verdana;">One of the main objectives of hospital managements is to control the length ...<strong>Background: </strong><span style="font-family:""><span style="font-family:Verdana;">One of the main objectives of hospital managements is to control the length of stay (LOS). Successful control of LOS of inpatients will result in reduction in the cost of care, decrease in nosocomial infections, medication side effects, and better management of the limited number of available patients’ beds. The length of stay (LOS) is an important indicator of the efficiency of hospital management by improving the quality of treatment, and increased hospital profit with more efficient bed management. The purpose of this study was to model the distribution of LOS as a function of patient’s age, and the Diagnosis Related Groups (DRG), based on electronic medical records of a large tertiary care hospital. </span><b><span style="font-family:Verdana;">Materials and Methods: </span></b><span style="font-family:Verdana;">Information related to the research subjects were retrieved from a database of patients admitted to King Faisal Specialist Hospital and Research Center hospital in Riyadh, Saudi Arabia between January 2014 and December 2016. Subjects’ confidential information was masked from the investigators. The data analyses were reported visually, descriptively, and analytically using Cox proportional hazard regression model to predict the risk of long-stay when patients’ age and the DRG are considered as antecedent risk factors. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Predicting the risk of long stay depends significantly on the age at admission, and the DRG to which a patient belongs to. We demonstrated the validity of the Cox regression model for the available data as the proportionality assumption is shown to be satisfied. Two examples were presented to demonstrate the utility of the Cox model in this regard.</span></span>展开更多
In the applications of COX regression models, we always encounter data sets t<span>hat contain too many variables that only a few of them contribute to the</span> model. Therefore, it will waste much more ...In the applications of COX regression models, we always encounter data sets t<span>hat contain too many variables that only a few of them contribute to the</span> model. Therefore, it will waste much more samples to estimate the “noneffective” variables in the inference. In this paper, we use a sequential procedure for constructing<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">the fixed size confidence set for the “effective” parameters to the model based on an adaptive shrinkage estimate such that the “effective” coefficients can be efficiently identified with the minimum sample size. Fixed design is considered for numerical simulation. The strong consistency, asymptotic distributions and convergence rates of estimates under the fixed design are obtained. In addition, the sequential procedure is shown to be asymptotically optimal in the sense of Chow and Robbins (1965).</span></span></span>展开更多
Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’...Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’ effect on survival after adjustment for other explanatory variables, and allows us to estimate the hazard (or risk) of death of newborn in NICU of hospitals in River Nile State-Sudan for the period (2018-2020). Study Data represented (neonate gender, mode of delivery, birth type, neonate weight, resident type, gestational age, and survival time). Kaplan-Meier method is used to estimate survival and hazard function for survival times of newborns that have not completed their first month. Of 700 neonates in the study area, 25% of them died during 2018-2020. Variables of interest that had a significant effect on neonatal death by Cox Proportional Hazard Model analysis were neonate weight, resident type, and gestational age. In Cox Proportional Hazard Model analysis all the variables of interest had an effect on neonatal death, but the variables with a significant effect included, weight of neonate, resident type and gestational age.展开更多
文摘Background: In-hospital mortality is a key indicator of the quality of care. Studies so far have demonstrated the influence of patient and hospital-related factors on in-hospital mortality. Currently, new variables, such as components of metabolic syndrome as comorbid conditions, are being incorporated as independent risk factors. We aimed to identify which individual, clinical and hospital characteristics are related to hospital mortality. Objectives: Demonstrate that the Cox proportional hazard model is not appropriate for the analysis of hospital mortality data when diagnostic-related groups are incorporated in the covariate structure. Methods: A retrospective single-center observational study design was used. Sampling was conducted between January 2016 and December 2018. Patients over 10 years, admitted to the emergency department with a precited stay of at least 1 hour were included. Multivariate Cox regression for survival data analyses was employed to analyze the data. Results: The sample consisted of 5897 patients. The mean age of all patients was 32.21 ± 0.29 years old, and the mean length of stay (LOS) was 9.47 ± 0.16 hours. We also categorized patients according to five Diagnosis Related Groups (DGR). Among the patients,1308 suffered from acute leukemia, 1127 had endocrine diseases, 1173 with kidney diseases, and 1016 had respiratory problems. At least one component of metabolic syndrome was present in 27.5% of the patients. During the observation period, 2299 (39%) died in hospital, and 3598 (61%) were discharged alive. We used the multivariate Cox regression non-proportional hazard model to evaluate the joint effect of these factors on the “Length of Stay” or LOS (the dependent variable of Cox regression). Age at admission, the presence of metabolic syndrome, and the DRG were significantly associated with the LOS.
文摘Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.
文摘This study has provided a starting point for defining and working with Cox models in respect of multivariate modeling. In medical researches, there may be situations, where several risk factors potentially affect patient prognosis, howbeit, only one or two might predict patient’s predicament. In seeking to find out which of the risk factors contribute the most to the survival times of patients, there was the need for researchers to adjust the covariates to realize their impact on survival times of patients. Aside the multivariate nature of the covariates, some covariates might be categorical while others might be quantitative. Again, there might be cases where researchers need a model that has <span style="font-family:Verdana;">the capability of extending survival analysis methods to assessing simulta</span><span style="font-family:Verdana;">neously the effect of several risk factors on survival times. This study unveiled the Cox model as a robust technique which could accomplish the aforementioned cases.</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">An investigation meant to evaluate the ITN-factor vis-à-vis its </span><span style="font-family:Verdana;">contribution towards death due to Malaria was exemplified with the Cox model. Data were taken from hospitals in Ghana. In doing so, we assessed hospital in-patients who reported cases of malaria (origin state) to time until death or censoring (destination stage) as a result of predictive factors (exposure to the malaria parasites) and some socioeconomic variables. We purposefully used Cox models to quantify the effect of the ITN-factor in the presence of other risk factors to obtain some measures of effect that could describe the rela</span><span style="font-family:Verdana;">tionship between the exposure variable and time until death adjusting for</span><span style="font-family:Verdana;"> other variables. PH assumption holds for all three covariates. Sex of patient was insignificant to deaths due to malaria. Age of patient and user status </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> both significant. The magnitude of the coefficient (0.384) of ITN user status depicts its high contribution to the variation in the dependent variable.</span>
文摘Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model positive stochastic dependences only with the general assumption that the underlying two marginal random variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general characterization of bivariate probability distributions that may play similar role as the copula methodology. Examples of reliability and biomedical applications are given.
基金supported by the Hebei Provincial Program for the Subjects with High Scholarship and Creative Research Potential,China.
文摘OBJECTIVE To retrospectively analyze clinical data of patientsfrom our hospital who underwent radical surgery for esophagealcarcinoma and for adenocarcinoma of the gastric cardia,as well asto investigate prognostic factors affecting the long-term survival ofthe patients.METHODS Data from the patients eligible for our study,admitted to the 4th Hospital of Hebei Medical University fromJanuary 1996 to December 2004,were randomized,and 12distinctive clinicopathologic factors influencing the survival rateof those who underwent radical surgery for esophageal carcinomaor carcinoma of the gastric cardia were collected.Univariate andmultivariate analysis of these individual variables were performedusing the Cox proportional hazard model.RESULTS It was shown by univariate analysis that age,tumorsize,pathologic type,lymph node status,TNM staging,depthof infiltration and encroachment into local organs,etc.,were thefactors that markedly influenced the prognosis of patients(P<0.01).Multivariate analysis showed that pathologic type,numberof the lymph node metastases,involvement of local organs,andTNM staging were independent prognostic factors(P<0.05).CONCLUSION The independent factors influencing theprognosis of patients with esophageal cancer and carcinoma ofthe gastric cardia include pathologic type,number of lymph nodemetastases,involvement of local organs and TNM staging.Themain prognostic factors affecting the patient's survival are patientage,tumor size and depth of infiltration.In addition,patients withinvolvement of the local organs have a worse prognosis,and theyshould be closely followed up.
文摘The aim of study was to evaluate clinical characteristics, social support and the association with the prognosis of breast cancer patients. A total of 204 participants were followed from 2003 until the end of 2008. Information about patients with breast cancer was submitted by investigators. Data were analyzed by Cox’s proportional hazard model. The clinical staging of breast cancer we used was the TNM classification. A 'T' score is based upon the size and/or extent of invasion. The 'N' score indicates the extent of lymph node involvement. Age at diagnose was associated with protective factors (HR=0.972;95%CI (0.834-1.130)), T staging (HR=2.075;95%CI (1.424-3.022)), N staging (HR=1.513;95%CI (1.066-2.148)), were associated with risk factor. Two survival graphs of nodes with negative effects by histology and nodes with positive effects by histology was analyzed by log-rank test, there was statistically significant relationship between two survival graphs (χ2 =136.8467, p <.0001). Age at diagnoses, Clinical stage tumor and node could contribute to the development of breast cancer and disease free survival in Chinese women.
文摘Early age at first sexual intercourse comes with many negative sexual outcomes namely: having unprotected sex on first sexual intercourse, condom misuse, high rate of sexually transmitted infections (STIs), teenage pregnancy, increased number of sexual partners, etc. In this paper, we considered some socio-demographic and cultural factors and their relationship with age at first sexual intercourse so as to reduce the numerous negative sexual outcomes of early age at first sexual intercourse using the 2018 Nigerian Demographic and Health Survey data. The analysis was made using the Cox proportional hazard model and the Kaplan-Meier plot. The result shows that some respondents started having their first sexual intercourse at the age of 8 years and about 54.4% of the respondents had their first sexual intercourse before age 17 years. The median age of first sexual intercourse is 16 years which implies that about 50% of the respondents had their first sexual intercourse on or before their 16th birthday. Education, religion, region and residence significantly affects the age of first sexual intercourse while circumcision has no significant effect.
文摘Mortality rate of gastric cancer is about 20.93/100000 which is the highest malignancy in China. The scientist of our country are at present interested in studying the postoperative survival model by multivariate analysis method just as stepwise regression model. The proportional hazard model initiated by Cox (1972) is more advanced than other regression method which is unneccessary to suppose the distribution of survival time and easy to analyse censoring data (the latter is difficult). This paper presented the first time application of Cox model in survival analysis of gastric cancer in China. The survival analysis system (SAS-Ⅰ) software complied by the author includes multivariate anlysis by Cox model, PV analysis and estimation of survival function which could provide useful information to surgeon for treatment of cancer patients.
文摘<strong>Background: </strong><span style="font-family:""><span style="font-family:Verdana;">One of the main objectives of hospital managements is to control the length of stay (LOS). Successful control of LOS of inpatients will result in reduction in the cost of care, decrease in nosocomial infections, medication side effects, and better management of the limited number of available patients’ beds. The length of stay (LOS) is an important indicator of the efficiency of hospital management by improving the quality of treatment, and increased hospital profit with more efficient bed management. The purpose of this study was to model the distribution of LOS as a function of patient’s age, and the Diagnosis Related Groups (DRG), based on electronic medical records of a large tertiary care hospital. </span><b><span style="font-family:Verdana;">Materials and Methods: </span></b><span style="font-family:Verdana;">Information related to the research subjects were retrieved from a database of patients admitted to King Faisal Specialist Hospital and Research Center hospital in Riyadh, Saudi Arabia between January 2014 and December 2016. Subjects’ confidential information was masked from the investigators. The data analyses were reported visually, descriptively, and analytically using Cox proportional hazard regression model to predict the risk of long-stay when patients’ age and the DRG are considered as antecedent risk factors. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Predicting the risk of long stay depends significantly on the age at admission, and the DRG to which a patient belongs to. We demonstrated the validity of the Cox regression model for the available data as the proportionality assumption is shown to be satisfied. Two examples were presented to demonstrate the utility of the Cox model in this regard.</span></span>
文摘In the applications of COX regression models, we always encounter data sets t<span>hat contain too many variables that only a few of them contribute to the</span> model. Therefore, it will waste much more samples to estimate the “noneffective” variables in the inference. In this paper, we use a sequential procedure for constructing<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">the fixed size confidence set for the “effective” parameters to the model based on an adaptive shrinkage estimate such that the “effective” coefficients can be efficiently identified with the minimum sample size. Fixed design is considered for numerical simulation. The strong consistency, asymptotic distributions and convergence rates of estimates under the fixed design are obtained. In addition, the sequential procedure is shown to be asymptotically optimal in the sense of Chow and Robbins (1965).</span></span></span>
文摘Cox Proportional Hazard model is a popular statistical technique for exploring the relationship between the survival time of neonates and several explanatory variables. It provides an estimate of the study variables’ effect on survival after adjustment for other explanatory variables, and allows us to estimate the hazard (or risk) of death of newborn in NICU of hospitals in River Nile State-Sudan for the period (2018-2020). Study Data represented (neonate gender, mode of delivery, birth type, neonate weight, resident type, gestational age, and survival time). Kaplan-Meier method is used to estimate survival and hazard function for survival times of newborns that have not completed their first month. Of 700 neonates in the study area, 25% of them died during 2018-2020. Variables of interest that had a significant effect on neonatal death by Cox Proportional Hazard Model analysis were neonate weight, resident type, and gestational age. In Cox Proportional Hazard Model analysis all the variables of interest had an effect on neonatal death, but the variables with a significant effect included, weight of neonate, resident type and gestational age.