The application of ultrasonic\|electrolysis process for the removal of copper is studied. In the ultrasonic field cavitation acts as jets and agitates the solution and breaks the barrier layer between the cathode sur...The application of ultrasonic\|electrolysis process for the removal of copper is studied. In the ultrasonic field cavitation acts as jets and agitates the solution and breaks the barrier layer between the cathode surface and the bulk of the solution. Thus increases metal deposition on the cathode surface. The results show that an ultrasonic field is successful for the removal of low copper concentrations in solution.展开更多
Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis an...Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and thctors that affect copper recovery rate and purity, mainly CuSO4.5H2O concentration, NaCI concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase ofCuSO4- 5H2O, NaCI, H2SO4 and current density and then decreased with further increasing these conditions. NaCI, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4.5H2O. When the concentration of CuSO4-5H2O NaCI and H2oSO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm-, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.展开更多
文摘The application of ultrasonic\|electrolysis process for the removal of copper is studied. In the ultrasonic field cavitation acts as jets and agitates the solution and breaks the barrier layer between the cathode surface and the bulk of the solution. Thus increases metal deposition on the cathode surface. The results show that an ultrasonic field is successful for the removal of low copper concentrations in solution.
文摘Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and thctors that affect copper recovery rate and purity, mainly CuSO4.5H2O concentration, NaCI concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase ofCuSO4- 5H2O, NaCI, H2SO4 and current density and then decreased with further increasing these conditions. NaCI, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4.5H2O. When the concentration of CuSO4-5H2O NaCI and H2oSO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm-, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.