期刊文献+
共找到137,854篇文章
< 1 2 250 >
每页显示 20 50 100
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review
1
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 NANOMATERIALS low carbon geopolymer concrete macro-mechanics MICROSTRUCTURE
在线阅读 下载PDF
RF Optimizer Model for Predicting Compressive Strength of Recycled Concrete
2
作者 LIU Lin WANG Liuyan +1 位作者 WANG Hui SUN Huayue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期215-223,共9页
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi... Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings. 展开更多
关键词 machine learning recycled concrete compressive strength
在线阅读 下载PDF
Mechanical Properties of Railway High-strength Manufactured Sand Concrete: Typical Lithology, Stone Powder Content and Strength Grade
3
作者 WANG Zhen LI Huajian +3 位作者 HUANG Fali YANG Zhiqiang WEN Jiaxin SHI Henan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期194-203,共10页
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li... In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed. 展开更多
关键词 manufactured sand concrete RAILWAY mechanical property LITHOLOGY stone powder content
在线阅读 下载PDF
Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure
4
作者 Zhenyu Zhang Quan Jin +4 位作者 Haitao Zhang Zhao Liu Yuyang Wu Longfei Zhang Renzhang Yan 《Structural Durability & Health Monitoring》 EI 2025年第1期55-75,共21页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simulation technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placement first and then prestress-tensioning is proposed. 展开更多
关键词 concrete panels freeze-thaw damage compression-shear crack tension-shear crack
在线阅读 下载PDF
Prospective Study and Physico-Mechanical Characterisation of Granular Materials Used in the Manufacture of Ordinary Concrete in Congo
5
作者 Jarlon Brunel Makela Bienvenu Ebata-Ndion +1 位作者 Narcisse Malanda Stanislas Kevin Mbeke 《Geomaterials》 2025年第1期1-24,共24页
This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from dif... This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from different quarries, highlighting their intrinsic properties. The aim was also to test their specific influence on the cementitious matrix of hardened concrete. Several laboratory tests were conducted on samples from Brazzaville and Pointe-Noire. To develop a variety of concrete formulations meeting rheological criteria (deformability, bleeding, segregation) and create an optimal concrete formulation approach considering its microstructural and compacting matrix, a good granular distribution was planned, using two types of sand (rolled and crushed). This involved correcting the rolled sand with variable proportions (30% to 50%) of crushed sand. The results from the eight concrete formulations studied, using the Dreux-Gorisse method, showed that six formulations produced the expected results. Compressive strengths at 28 days ranged from 25 to 36.75 MPa. As a result, formulation 3 appears to be the best, with a mechanical strength of 36.75 MPa at 28 days, compared to formulation 1 (33.75 MPa), formulation 4 (27.25 MPa), and formulation 2 (26.65 MPa) for the Brazzaville locality. For the Pointe-Noire locality, formulation 8 was judged the best, with a characteristic mechanical strength of 29.70 MPa at 28 days, followed by formulation 7 (27.30 MPa), formulation 5 (22.80 MPa), and formulation 6 (18.30 MPa). In summary, the concretes formulated with raw sand showed better results than those with improved sands. The same was true for concrete formulations using rolled sand and gravel. 展开更多
关键词 SAND GRAVEL CEMENT FORMULATION Identification concrete Physical-Mechanical Properties
在线阅读 下载PDF
Fully Recycled Syntheses Using Recycled Concrete Powder, Oyster Shell and Wood Powder: Effect of Combined Ground Treatment on Mechanical Strength and FTIR, XRD, and SEM Characterization
6
作者 Ejazulhaq Rahimi Yuma Kawasaki +1 位作者 Ayane Yui Yuta Yamachi 《Open Journal of Composite Materials》 2025年第1期44-57,共14页
The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from o... The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from oyster shell farming. However, there is a lack of evidence on the possibility of producing a fully recycled composite consisting of recycled concrete and oyster shell without the need for new cement and natural aggregates. In this study, recycled concrete powder (RCP) and oyster shell were used to produce a green composite. Separate ground and combined ground (separate ground and co-ground) RCP and oyster shells are used to determine the effects of grinding approaches on the mechanical and chemical properties of the composite. The composite samples were molded via press molding by applying 30 MPa of pressure for 10 minutes. The results revealed that the composite prepared via the combined ground approach presented the highest flexural strength compared to the separate ground and unground samples. The FTIR and XRD characterization results revealed no chemical or phase alterations in the raw materials or the resulting composites before and after grinding. SEM analysis revealed that combined grinding reduced the particles’ size and improved the dispersion of the mixture, thereby increasing the strength. 展开更多
关键词 Oyster Shells GRINDING Recycled concrete Powder Waste Wood Composite
在线阅读 下载PDF
Experimental Analysis of the Influence of Basalt Fibers on the Frost Resistance of Concrete
7
作者 Junli Guo Guoxin Jiang +5 位作者 Chuan Zhao Linlin Jiang Hongyu Liu Chunyi Zhuang Zelong Ma Xin Zhang 《Journal of Geoscience and Environment Protection》 2025年第1期292-301,共10页
Concrete buildings used in cold regions are prone to freeze-thaw damage, leading to internal cracking and surface peeling of the concrete. Therefore, improving the freeze-thaw resistance of concrete is of great signif... Concrete buildings used in cold regions are prone to freeze-thaw damage, leading to internal cracking and surface peeling of the concrete. Therefore, improving the freeze-thaw resistance of concrete is of great significance for the safety of hydraulic engineering. This paper explores the effect of basalt fibers on improving the frost resistance index of concrete through a series of experiments, and analyzes the influencing mechanism. The results show that adding an appropriate amount of basalt fibers can significantly improve the frost resistance of concrete and reduce the freeze-thaw damage phenomenon indicated by concrete specimens. Adding 0.1% basalt fiber can maintain the relative dynamic modulus of concrete specimens at 98% after 150 freeze-thaw cycles, while adding 0.3% basalt fiber can control the quality loss rate of concrete specimens after 150 freeze-thaw cycles at 0.87%. Taking into account both the frost resistance effect and economic factors, it is recommended that the basalt fiber content in frost resistant concrete be 0.1%. The research results can provide reference and guidance for the optimization design of the mix proportion of hydraulic concrete in cold regions. 展开更多
关键词 Basalt Fiber concrete Frost Resistance Dynamic Modulus of Elasticity
在线阅读 下载PDF
Assessing the Diurnal and Spatial Role of Greenspaces and Concrete Landscapes in Regulating Urban Microclimate
8
作者 Fardina Jahid Tahia Eyanur Hossain +1 位作者 Anika Tahsin Odri Ummeh Saika 《Journal of Geoscience and Environment Protection》 2025年第1期397-421,共25页
Amidst Dhaka city’s rapidly growing urban fabric, Dhanmondi Lake is one of the few remaining natural features that directly impacts the area’s microclimate, which is especially relevant to combating the increasing u... Amidst Dhaka city’s rapidly growing urban fabric, Dhanmondi Lake is one of the few remaining natural features that directly impacts the area’s microclimate, which is especially relevant to combating the increasing urban heat island phenomenon. This research investigates the lake’s diurnal and spatial impact on local temperature and humidity variations between greenspaces and concrete landscapes. Data from 14 monitoring points, collected over two months (March-April 2024), were analyzed using descriptive statistics (mean, median, standard deviation) and inferential statistics (Pearson’s correlation coefficient), alongside spatial analysis through Inverse Distance Weighting (IDW) to visualize microclimate patterns. The results demonstrate that during the daytime, temperatures are higher in concrete areas and lower near the lake, with a strong positive correlation between distance from the lake and temperature across the lake (r = 0.933, p = 0.002). Conversely, at night, temperature decreases as the distance from the lake increases, with a strong negative correlation between them (r = −0.983, p = 0.000). The recorded nighttime temperature was relatively stable with a small variation (mean = 28.47˚C, SD = 0.21˚C) across the lake, suggesting the lake’s ability to retain heat at night. In contrast, the average temperature in the areas near the lake was relatively more stable (mean = 28.59˚C, SD = 0.06˚C). Humidity consistently showed a strong negative correlation with distance from the lake both day (r = −0.993, p = 0.000) and night (r = −0.977, p = 0.000), with higher humidity levels near the lake and lower concrete areas. These findings emphasize that distance from the lake and greenspace is a key factor influencing microclimate. The results lead to policy recommendations highlighting integrating natural elements into urban planning to mitigate urban heat island (UHI) effects and enhance thermal comfort. 展开更多
关键词 Urban Microclimate Greenspaces concrete Landscapes Temperature and Humidity Regulation Diurnal Variation Spatial Analysis
在线阅读 下载PDF
Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region
9
作者 Huayi Zhang Maobin Song +2 位作者 Lei Shen Nizar Faisal Alkayem Maosen Cao 《Structural Durability & Health Monitoring》 EI 2025年第1期167-191,共25页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed. 展开更多
关键词 Beam-string structure(BSS) concrete-filled steel tube(CFST) bending stiffness timing of concrete placement prestress-tensioning
在线阅读 下载PDF
Study on Sulfate Erosion Resistance of Basalt Fiber Concrete after Ultra-Low Temperature Freezing and Thawing
10
作者 Kourachia Said Ali Yang Li Lingfeng Ye 《World Journal of Engineering and Technology》 2025年第1期80-95,共16页
This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to ex... This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance. 展开更多
关键词 Basalt Fiber concrete Ultra-Low Temperature Freeze-Thaw Cycle Compressive Properties Splitting Tensile Properties Strength Deterioration Model
在线阅读 下载PDF
Research Progress on Earthquake Collapse Resistance of Reinforced Concrete Frame Structures
11
作者 Haibing Liu Junqi Lin Jinlong Liu 《Journal of Architectural Research and Development》 2025年第1期52-57,共6页
With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering ty... With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance. 展开更多
关键词 Reinforced concrete frame structure Seismic performance COLLAPSE Research status
在线阅读 下载PDF
A Damage Control Model for Reinforced Concrete Pier Columns Based on Pre-Damage Tests under Cyclic Reverse Loading
12
作者 Zhao-Jun Zhang Jing-Shui Zhen +3 位作者 Bo-Cheng Li De-Cheng Cai Yang-Yang Du Wen-Wei Wang 《Structural Durability & Health Monitoring》 2025年第2期327-346,共20页
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ... To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading. 展开更多
关键词 Reinforced concrete pier cyclic reverse load pre-damage damage index displacement control
在线阅读 下载PDF
Effects of Repair Grouting and Jacketing on Corrosion Concrete Using Ultrasonic Method
13
作者 Rivky Afanda Ahmad Zaki 《Structural Durability & Health Monitoring》 2025年第2期265-284,共20页
Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinf... Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure.The repair method is one approach to overcome this problem.This research aims to determine the effect of grouting and jacketing repairs on corroded concrete.The concrete used has dimensions of 15 cm×15 cm×60 cm with planned corrosion variations of 50%,60%,and 70%.The test objects were tested using the Non-Destructive Testing(NDT)method using Ultrasonic Pulse Velocity(UPV).The test results show that the average speed of normal concrete is 5070 m/s,while the lowest average speed is 3070 m/s on the 70%planned corrosion test object.The test object was then given a load of 1600 kgf.At this stage,there is a decrease in speed and wave shape with the lowest average speed obtained at 2753 m/s.The repair method is an effort to restore concrete performance by using grouting and jacketing.Grouting is done by injecting mortar material into it.Jacketing involves adding thickness to the existing concrete layer with additional layers of concrete.After improvements were made,there was an improvement in the UPV test,with a peak speed value of 4910 m/s.Repairing concrete by filling cracks can improve concrete continuity and reduce waveform distortion,thereby increasing wave propagation speed. 展开更多
关键词 CORROSION concrete REPAIR GROUTING JACKETING non-destructive testing(NDT) ultrasonic pulse velocity(UPV)
在线阅读 下载PDF
Experimental and Numerical Study of Bonding Capacity of Interface between Ultra-High Performance Concrete and Steel Tube
14
作者 Ruikun Xu Jiu Li +1 位作者 Wenjie Li Wei Zhang 《Structural Durability & Health Monitoring》 2025年第2期285-305,共21页
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra... This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure. 展开更多
关键词 Ultra-high performance concrete filled steel tube(UHPCFST) push-out test bonding capacity cohesive zone model
在线阅读 下载PDF
“强省会”政策执行前后城市旅游视觉形象分异研究——基于福州市OGC和TGC图像资料的编码分析 被引量:2
15
作者 查瑞波 林叶凡 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第1期109-119,130,共12页
近年来,全国多地推行“强省会”政策,其在修正城市定位的同时也对城市形象产生影响。在Web 2.0时代,图像资料成为研究城市旅游形象的重要载体。以福建省省会福州市为案例,以“强省会”政策的执行时间为切割点,通过互联网分别收集政策执... 近年来,全国多地推行“强省会”政策,其在修正城市定位的同时也对城市形象产生影响。在Web 2.0时代,图像资料成为研究城市旅游形象的重要载体。以福建省省会福州市为案例,以“强省会”政策的执行时间为切割点,通过互联网分别收集政策执行前后官方生成内容(occupationally-generated content,OGC)和旅游者生成内容(tourist-generated content,TGC),借助Nvivo软件对照片内容进行编码,比较“强省会”政策执行前后旅游营销组织与旅游者构造的城市旅游形象差异,探究“强省会”政策对OGC和TGC的影响。研究发现,在“强省会”政策执行前,OGC擅长用建筑特写、自然生态景观以及全景式城市和景区这3种类别塑造城市旅游形象,并形成以这3种类型为核心的三角形传播结构;TGC则青睐用自然生态景观、人物特写、动植物特写、建筑特写、道路特写5种类别表达旅游城市形象,形成以自然生态景观为中心,其他4种类别与之相连接的十字分散结构。在“强省会”政策执行后,OGC的传播方式没有发生太大变化,但更注重用艺术文化等类别展现福州市的文化底蕴,传播内容更加多元、传播结构更加稳固;TGC则更倾向于在传达城市旅游形象过程中表现“人”的主体作用,将人物特写渗透至其他类别。此外,研究还发现,OGC对TGC有一定影响;“强省会”政策为OGC带来了更加清晰的目标导向,为TGC增加了旅游者作为“人”的主体意识。 展开更多
关键词 “强省会”政策 城市目的地 旅游视觉形象 分异特征 OGC tgc
在线阅读 下载PDF
Intelligent Small Sample Defect Detection of Concrete Surface Using Novel Deep Learning Integrating Improved YOLOv5 被引量:3
16
作者 Yongming Han Lei Wang +1 位作者 Youqing Wang Zhiqiang Geng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期545-547,共3页
Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The p... Dear Editor,This letter presents an intelligent small sample defect detection of concrete surface using novel deep learning integrating the improved YOLOv5 based on the Wasserstein GAN(WGAN)enhancement algorithm.The proposed method is capable of producing top-notch data sets to address the issues of insufficient samples and substandard quality. 展开更多
关键词 concrete integrating ALGORITHM
在线阅读 下载PDF
Utilization of Basalt Saw Mud as a Spherical Porous Functional Aggregate for the Preparation of Ordinary Structure Concrete 被引量:2
17
作者 周永祥 关青锋 +2 位作者 LENG Faguang WANG Jing LI Tianjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期364-375,共12页
To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs)... To promote the production and application of artificial aggregates,save natural sand resources and protect the ecological environment,we evaluated the feasibility of using spherical porous functional aggregates(SPFAs) formed by basalt saw mud under autoclave curing in ordinary structural concrete.In our work,two types of prewetted functional aggregates were taken as replacements for natural aggregates with different volume substitution rates(0%,5%,10%,15%,20%,25%,and 30%) in the preparation of ordinary structural concrete with water-to-binder ratios(W/B) of 0.48 and 0.33.The effects of the functional aggregate properties and content,W/B,and curing age on the fluidity,density,mechanical properties and autogenous shrinkage of ordinary concrete were analyzed.The experimental results showed that the density of concrete declined at a rate of not more than 5%,and the 28 d compressive strength could reach 31.0-68.2 MPa.Low W/B,long curing age and high-quality functional aggregates were conducive to enhancing the mechanical properties of SPFAs concrete.Through the rolling effects,SPFAs can optimize the particle gradation of aggregate systems and improve the fluidity of concrete,and the water stored inside SPFAs provides an internal curing effect,which prolongs the cement hydration process and considerably reduces the autogenous shrinkage of concrete.SPFAs exhibits high strength and high density,as well as being more cost-effective and ecological,and is expected to be widely employed in ordinary structural concrete. 展开更多
关键词 lightweight concrete civil concrete building basalt saw mud fly ash internal curing environmentally friendly
在线阅读 下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
18
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration concrete target EROSION Projectile nose evolution model
在线阅读 下载PDF
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
19
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 concrete dam Buttress dam SLIDING Shear strength concrete-rock interface Asperity inclination Asperity location
在线阅读 下载PDF
旅游凝视视域下爱达地中海号邮轮OGC与TGC的分异与合和
20
作者 户文月 《黑龙江生态工程职业学院学报》 2024年第6期56-63,共8页
旅游凝视是一种观察、体验的交互性双向行为。基于IPA模型对爱达地中海号邮轮进行职业生成内容(OGC)和旅游者生成内容(TGC)分异与合和进行研究。研究发现:(1)职业生成内容方面,营销氛围渲染不足,倾向于固化的客观陈述,用词的丰富度及情... 旅游凝视是一种观察、体验的交互性双向行为。基于IPA模型对爱达地中海号邮轮进行职业生成内容(OGC)和旅游者生成内容(TGC)分异与合和进行研究。研究发现:(1)职业生成内容方面,营销氛围渲染不足,倾向于固化的客观陈述,用词的丰富度及情感色彩较弱,且在关注视角上侧重于邮轮公司、邮轮文化、邮轮特色等方面,而对TGC的具体邮轮体验、邮轮设施、邮轮服务关注不足。(2)旅游者生成内容对爱达地中海号邮轮情感评价整体较为正面积极,少数的消极情感主要涉及邮轮餐饮、邮轮住宿、邮轮服务和运营管理四个方面。(3)结合IPA模型从继续保持区、供给过度区、机会发展区和重点改进区等方面提出相关优化策略。 展开更多
关键词 旅游凝视 爱达地中海号邮轮 IPA模型 OGC tgc
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部