期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE INVESTIGATION ON DYNAMIC FRACTURE BEHAVOUR OF MATERIALS UNDER COMPRESSIVE-SHEAR COMBINED STRESS WAVES
1
作者 马维 段祝平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期335-346,共12页
In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loa... In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range.The impacting tests are carried out on the pressure-shear gas gun.The loading rate achieved is dK/dt~10~8 MPam^(1/2)s^(-1).With the elimination of influence of the specimen boundary,the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the 'momentum trap'technique.Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces.In the current study,some important phenomena have been observed.The special loading of the single pulse can bring about material damage around crack tip,and affect the material behavior,such as kinking and branching of the crack propagation.Failure mode transitions from mode Ⅰ to mode Ⅱ crack are observed under asymmetrical impact conditions.The mechanisms of the dynamic crack propagation are consistent with the damage failure model. 展开更多
关键词 single pulse compressive-shear combined stress wave pressureshear gas gun
在线阅读 下载PDF
Crack growth time dependence analysis of granite under compressive-shear stresses state
2
作者 李江腾 曹平 +1 位作者 古德生 吴超 《Journal of Coal Science & Engineering(China)》 2008年第1期34-37,共4页
The curves of crack relative length lib and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-to... The curves of crack relative length lib and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxa- tion method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length lib and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastro- phically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length lib and crack growth time t of granite move to right with decrease of stress σl or crack length a, which implies that limit time increases consequently. The results correspond to practicality. 展开更多
关键词 GRANITE compressive-shear stresses state crack stability growth time de-pendence limit time
在线阅读 下载PDF
A multifunctional rock testing system for rock failure analysis under different stress states: Development and application 被引量:3
3
作者 Shucai Li Jie Hu +4 位作者 Florian Amann Liping Li Hongliang Liu Shaoshuai Shi Pooya Hamdi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1531-1544,共14页
The stress state in a rock mass is complex. Stress redistribution around underground excavation may lead to various failure modes, including compressive-shear, tensile-shear, and tensile failures. The ability to perfo... The stress state in a rock mass is complex. Stress redistribution around underground excavation may lead to various failure modes, including compressive-shear, tensile-shear, and tensile failures. The ability to perform laboratory tests with these complex stress states is significant for establishing new strength criteria. The present paper introduces a new rock testing system with “tensile-compressive-shear”loading functions. The device includes bi-directional and double-range hydraulic cylinders, auxiliary loading equipment, and roller rows that can perform direct compressive-shear tests, direct tensile tests,and direct tensile-shear tests. The testing system provides maximum vertical and lateral loading forces of2000 k N and allows testing cubical rock specimens with dimensions of 0.5 m × 0.5 m × 0.5 m. The performance of the testing machine was evaluated by testing a rock-like material based on cement mortar under compressive-shear, tensile, and tensile-shear stress states. The failure process and deformation characteristics were monitored during loading using acoustic emission(AE) transient recorder,piezoelectric AE sensors, a high-speed camera, and a thermal infrared camera. The failure mechanism was investigated by analyzing AE counts, AE amplitude, strain, and temperature changes on the rock specimen surface. The test results confirmed that the testing system could successfully simulate the abovementioned stress path. The AE counts and amplitude responses were influenced by different failure modes. The temperature response during the compressive-shear test indicated the development of a high-temperature band on the rock specimen surface. In contrast, a negligible temperature change was observed during the tensile and tensile-shear tests. The newly developed multifunctional rock testing system allows laboratory tests under various failure modes. The monitoring results of multiple variables during rock failure tests provide valuable information on failure characteristics. 展开更多
关键词 Rock testing system compressive-shear test Tensile test Tensile-shear test Failure behavior Multiple variable evolutions
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部