期刊文献+
共找到129,557篇文章
< 1 2 250 >
每页显示 20 50 100
Global stability of Cohen-Grossberg neural networks with time-varying and distributed delays 被引量:3
1
作者 Tao LI Shumin FEI Qing ZHU 《控制理论与应用(英文版)》 EI 2008年第4期449-454,共6页
In this paper, the global asymptotic stability is investigated for a class of Cohen-Grossberg neural networks with time-varying and distributed delays. By using the Lyapunov-Krasovskii functional and equivalent descri... In this paper, the global asymptotic stability is investigated for a class of Cohen-Grossberg neural networks with time-varying and distributed delays. By using the Lyapunov-Krasovskii functional and equivalent descriptor form of the considered system, several delay-dependent sufficient conditions are obtained to guarantee the asymptotic stability of the addressed systems. These conditions are dependent on both time-varying and distributed delays and presented in terms of LMIs and therefore, the stability criteria of such systems can be checked readily by resorting to the Matlab LMI toolbox. Finally, an example is given to show the effectiveness and less conservatism of the proposed methods. 展开更多
关键词 cohen-grossberg neural networks Asymptotic stability Free-weighting matrix Distributed delay LMIS
在线阅读 下载PDF
Analysis for Cohen-Grossberg neural networks with multiple delays 被引量:2
2
作者 Ce JI Huaguang ZHANG Huanxin GUAN Ping YUAN 《控制理论与应用(英文版)》 EI 2006年第4期392-396,共5页
The stability analysis of Cohen-Grossberg neural networks with multiple delays is given. An approach combining the Lyapunov functional with the linear matrix inequality (LMI) is taken to obtain the sufficient condit... The stability analysis of Cohen-Grossberg neural networks with multiple delays is given. An approach combining the Lyapunov functional with the linear matrix inequality (LMI) is taken to obtain the sufficient conditions for the globally asymptotic stability of equilibrium point. By using the properties of matrix norm, a practical corollary is derived. All results are established without assuming the differentiability and monotonicity of activation functions. The simulation samples have proved the effectiveness of the conclusions. 展开更多
关键词 cohen-grossberg neural networks Multiple delays LMI Lyapunov functional Globally asymptotic stability
在线阅读 下载PDF
Global exponential stability of Cohen-Grossberg neural networks with time-varying delays and impulses 被引量:2
3
作者 祝庆 梁芳 张青 《Journal of Shanghai University(English Edition)》 CAS 2009年第3期255-259,共5页
In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are e... In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and Lyapunov functional. An example is given to demonstrate the effectiveness of our results. 展开更多
关键词 cohen-grossberg neural networks exponential stability DELAYS IMPULSES
在线阅读 下载PDF
Stability Analysis of Cohen-Grossberg Neural Networks with Time-Varying Delays 被引量:1
4
作者 刘艳青 唐万生 《Transactions of Tianjin University》 EI CAS 2007年第1期12-17,共6页
The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some su... The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some sufficient criteria for the global exponential stability and the exponential convergence rate of the equilibrium point of the system are obtained. The criteria do not require the activation functions to be differentiable or monotone nondecreasing. Some stability results from previous works are extended and improved. Comparisons are made to demonstrate the advantage of our results. 展开更多
关键词 cohen-grossberg neural networks time-varying delay equilibrium point global exponential stability convergence rate
在线阅读 下载PDF
Global exponential stability of Cohen-Grossberg neural networks with variable delays 被引量:4
5
作者 ZHANG Li-juan SHI Bao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第2期167-174,共8页
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique,... A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice. 展开更多
关键词 cohen-grossberg neural network equilibrium point DELAY global exponential stability
在线阅读 下载PDF
Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
6
作者 Yu-Jiao Huang Xiao-Yan Yuan +2 位作者 Xu-Hua Yang Hai-Xia Long Jie Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期196-205,共10页
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficie... This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen-Grossberg neural networks(FOCGNNs)with time delays.Based on Brouwer's fixed point theorem,sufficient conditions are established to ensure the existence of Πi=1^n(2Ki+1)equilibrium points for FOCGNNs.Through the use of Hardy inequality,fractional Halanay inequality,and Lyapunov theory,some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of Πi=1^n(Ki+1)equilibrium points for FOCGNNs.The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases.The activation functions are nonlinear and nonmonotonic.There could be many corner points in this general class of activation functions.The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points.Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories.Finally,two numerical examples are provided to illustrate the effectiveness of the obtained results. 展开更多
关键词 FRACTIONAL-ORDER cohen-grossberg neural networks MULTIPLE LAGRANGE STABILITY MULTIPLE LYAPUNOV asymptotical STABILITY time delays
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
7
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
8
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY neural network
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS
9
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
10
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Application of Artificial Neural Networks in Predicting Malignant Lung Nodules on Chest CT Scans
11
作者 Wenhui Li Yuping Yang +2 位作者 Yixian Liang Pengliang Xu Qiuqiang Chen 《Proceedings of Anticancer Research》 2025年第1期115-121,共7页
Objective:To explore a simple method for improving the diagnostic accuracy of malignant lung nodules based on imaging features of lung nodules.Methods:A retrospective analysis was conducted on the imaging data of 114 ... Objective:To explore a simple method for improving the diagnostic accuracy of malignant lung nodules based on imaging features of lung nodules.Methods:A retrospective analysis was conducted on the imaging data of 114 patients who underwent lung nodule surgery in the Thoracic Surgery Department of the First People’s Hospital of Huzhou from June to September 2024.Imaging features of lung nodules were summarized and trained using a BP neural network.Results:Training with the BP neural network increased the diagnostic accuracy for distinguishing between benign and malignant lung nodules based on imaging features from 84.2%(manual assessment)to 94.1%.Conclusion:Training with the BP neural network significantly improves the diagnostic accuracy of lung nodule malignancy based solely on imaging features. 展开更多
关键词 Lung nodule Malignant lung tumor neural network Chest CT
在线阅读 下载PDF
Predicting outcomes using neural networks in the intensive care unit
12
作者 Gumpeny R Sridhar Venkat Yarabati Lakshmi Gumpeny 《World Journal of Clinical Cases》 2025年第11期1-11,共11页
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da... Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality. 展开更多
关键词 Large language models HALLUCINATIONS Supervised learning Unsupervised learning Convoluted neural networks BLACK-BOX WORKFLOW
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
13
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
14
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(PINN) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks
15
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:7
16
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
17
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
18
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
在线阅读 下载PDF
μ-stability of multiple equilibria in Cohen-Grossberg neural networks and its application to associative memory
19
作者 LIU Yang WANG Zhen +2 位作者 XIAO Min LI YuXia SHEN Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第9期2611-2624,共14页
In this paper, the μ-stability of multiple equilibrium points(EPs) in the Cohen-Grossberg neural networks(CGNNs) is addressed by designing a kind of discontinuous activation function(AF). Under some criteria, CGNNs w... In this paper, the μ-stability of multiple equilibrium points(EPs) in the Cohen-Grossberg neural networks(CGNNs) is addressed by designing a kind of discontinuous activation function(AF). Under some criteria, CGNNs with this AF are shown to possess at least 5^(n)EPs, of which 3^(n)EPs are locally μ-stable. Compared with the saturated AF or the sigmoidal AF, CGNNs with the designed AF can produce many more total/stable EPs. Therefore, when CGNNs with the designed discontinuous AF are applied to associative memory, they can store more prototype patterns. Moreover, the AF is expanded to a more general version to further increase the number of total/stable equilibria. The CGNNs with the expanded AF are found to produce(2k+3)^(n)EPs, of which (k+2)^(n)EPs are locally μ-stable. By adjusting two parameters in the AF, the number of sufficient conditions ensuring the μ-stability of multiple equilibria can be decreased. This finding implies that the computational complexity can be greatly reduced.Two numerical examples and an application to associative memory are illustrated to verify the correctness of the obtained results. 展开更多
关键词 associative memory cohen-grossberg neural networks discontinuous activation functions multiple equilibria μ-stability
原文传递
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
20
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部