The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the...The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.展开更多
Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deploye...Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deployed to simultaneously serve multiple user equipments(UEs)for improved performance.Meanwhile,a clustered CF system is considered to tackle the backhaul overhead issue in the huge connection network.In this paper,taking into account the more realistic mobility scenarios,we propose a hybrid small-cell(SC)and clustered CF massive MIMO system through classifications of the UEs and APs,and constructing the corresponding pairs to run in SC or CF mode.A joint initial AP selection of this paradigm for all the UEs is firstly proposed,which is based on the statistics of estimated channel.Then,closed-form expressions of the downlink achievable rates for both the static and moving UEs are provided under Ricean fading channel and Doppler shift effect.We also develop a semi-heuristic search algorithm to deal with the AP selection for the moving UEs by maximizing the weight average achievable rate.Numerical results demonstrate the performance gains and effective rates balancing of the proposed system.展开更多
For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often des...For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.展开更多
This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink schedulin...This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink scheduling problem and power minimization with multi-user rate constraints.According to the channel state,it is shown that there is a power optimal policy which selects a subset of users in each scheduling interval.We present user selection algorithms for DPC,ZF-DPC,ZF-BF and TDMA for multi-antenna OFDM system in broadcast channels,and we also present the practical water-filling solution in this paper.By the selected users with the consideration of fairness,we derive the power optimization algorithm with multi-user rate constraints.We also analyze the power duality of uplink-downlink for the transmit strategies of DPC,ZF-DPC and ZF-BF.Simulation results show that the present user-scheduling algorithm and power minimization algorithm can achieve good power performance,and that the scheduling algorithm can guarantee fairness.展开更多
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
文摘The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.
基金This work was supported by the China National Key Research and Development Plan(No.2020YFB1807204).
文摘Recently,cell-free(CF)massive multipleinput multiple-output(MIMO)becomes a promising architecture for the next generation wireless communication system,where a large number of distributed access points(APs)are deployed to simultaneously serve multiple user equipments(UEs)for improved performance.Meanwhile,a clustered CF system is considered to tackle the backhaul overhead issue in the huge connection network.In this paper,taking into account the more realistic mobility scenarios,we propose a hybrid small-cell(SC)and clustered CF massive MIMO system through classifications of the UEs and APs,and constructing the corresponding pairs to run in SC or CF mode.A joint initial AP selection of this paradigm for all the UEs is firstly proposed,which is based on the statistics of estimated channel.Then,closed-form expressions of the downlink achievable rates for both the static and moving UEs are provided under Ricean fading channel and Doppler shift effect.We also develop a semi-heuristic search algorithm to deal with the AP selection for the moving UEs by maximizing the weight average achievable rate.Numerical results demonstrate the performance gains and effective rates balancing of the proposed system.
基金support by the National Natural Science Foundation of China (60702060)the 111 Project
文摘For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.
基金Project supported by the National Natural Science Foundation of China (No. 60572157)the Key Laboratory of Universal Wireless Communication of the Ministry of Education,China (No. 2007103)
文摘This paper deals with design and analysis of user scheduling and power allocation for multi-antenna OFDM systems with DPC,ZF-DPC,ZF-BF and TDMA transmit strategies.We consider the general multi-user downlink scheduling problem and power minimization with multi-user rate constraints.According to the channel state,it is shown that there is a power optimal policy which selects a subset of users in each scheduling interval.We present user selection algorithms for DPC,ZF-DPC,ZF-BF and TDMA for multi-antenna OFDM system in broadcast channels,and we also present the practical water-filling solution in this paper.By the selected users with the consideration of fairness,we derive the power optimization algorithm with multi-user rate constraints.We also analyze the power duality of uplink-downlink for the transmit strategies of DPC,ZF-DPC and ZF-BF.Simulation results show that the present user-scheduling algorithm and power minimization algorithm can achieve good power performance,and that the scheduling algorithm can guarantee fairness.