In this study,we conduct an investigation on decoupling gravitational sources under the framework of f(R,T)gravity.Basically,the complete geometric deformation technique is employed,which facilitates finding the exact...In this study,we conduct an investigation on decoupling gravitational sources under the framework of f(R,T)gravity.Basically,the complete geometric deformation technique is employed,which facilitates finding the exact solutions to the anisotropic astrophysical system smoothly without imposing any particular ansatz for the deformation function.In addition,we used 5-dimensional Euclidean spacetime in order to describe the embedding Class Ⅰ spacetime in order to obtain a solvable spherical physical system.The resulting solutions are both physically interesting and viable with new possibilities for investigation.Notably,the present investigation demonstrates that the mixture of f(R,T)+CGD translates to a scenario beyond the pure GR realm and helps to enhance the features of the interior astrophysical aspects of compact stellar objects.To determine the physical acceptability and stability of the stellar system based on the obtained solutions,we conducted a series of physical tests that satisfied all stability criteria,including the nonsingular nature of density and pressure.展开更多
In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to ...In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy.We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff(TOV)equation. We match the interior solution to an exterior Reissner-Nordstr?m one, and study the energy conditions,speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.展开更多
基金TRC Project(Grant No.BFP/RGP/CBS-/19/099),the Sultanate of Omancontinuous support and encouragement from the administration of University of Nizwa。
文摘In this study,we conduct an investigation on decoupling gravitational sources under the framework of f(R,T)gravity.Basically,the complete geometric deformation technique is employed,which facilitates finding the exact solutions to the anisotropic astrophysical system smoothly without imposing any particular ansatz for the deformation function.In addition,we used 5-dimensional Euclidean spacetime in order to describe the embedding Class Ⅰ spacetime in order to obtain a solvable spherical physical system.The resulting solutions are both physically interesting and viable with new possibilities for investigation.Notably,the present investigation demonstrates that the mixture of f(R,T)+CGD translates to a scenario beyond the pure GR realm and helps to enhance the features of the interior astrophysical aspects of compact stellar objects.To determine the physical acceptability and stability of the stellar system based on the obtained solutions,we conducted a series of physical tests that satisfied all stability criteria,including the nonsingular nature of density and pressure.
基金the University of Nizwa for their continuous support
文摘In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy.We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff(TOV)equation. We match the interior solution to an exterior Reissner-Nordstr?m one, and study the energy conditions,speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.