Objective: To evaluate the regulatory effects of Banxia (Pinellia ternata, P) and Huanglian (Coptis chinensis, C) drugpair, derived from Banxiaxiexin soup, on the gastrointestinal movement of mice with functional...Objective: To evaluate the regulatory effects of Banxia (Pinellia ternata, P) and Huanglian (Coptis chinensis, C) drugpair, derived from Banxiaxiexin soup, on the gastrointestinal movement of mice with functional dyspepsia. Methods:Mice were treated with different proportions of the P and C drug pair (1:1, 3:1, and 4:1) for 10 days, and subsequentlyinjected with atropine (ATR) or neostigmine (NEO). The effects of the different proportions of P and C were evaluatedbased on the alvine advance rate. In addition, we used the same modeling method used in the first experiment andadministered P: C at ratio of 3:1 and at different doses respectively (4.68 g/L, 2.34 g/L, and 1.17 g/L), and tested levelsof the gastrointestinal hormones, gastrin (GAS), vasoactive intestinal polypeptide (VIP), and somatostatin (SS) in thesmall intestinal tissue using an enzyme-linked immunosorbent assay. Results: In the groups of NEO-induced mice, P:Cat ratios of 1:1, 3:1, and 4:1 significantly reduced the alvine advance rate compared with the NEO model group (P =0.003, P = 0.012 and P = 0.021, respectively). In the groups of ATR-induced mice, only P:1 at ratio of 3:1 significantlyincreased the alvine advance rate compared with the ATR model group (P = 0.007). After exposure to P: C at ratio of 3:1and at different dose, the GAS level was lower in the low-, medium-, and high-dose NEO groups than that in the NEOmodel group (P = 0.001, P = 0.004, and P = 0.003, respectively). The VIP levels were higher in the medium-andhigh-dose NEO groups than that in the NEO model group (P = 0.004 and P = 0.002, respectively). In addition, the SSlevel increased in the NEO medium-dose group compared with that in the NEO model group (P = 0.002). The GAS levelwas higher in the ATR medium- and high-dose groups than in the ATR model group (P = 0.007 and P = 0.021,respectively). The VIP level was lower in the ATR low-, medium-, and high-dose than that in the ATR model group (P =0.001, P = 0.001, and P = 0.001, respectively). Furthermore, the SS level was lower in the ATR medium- and high-dosegroups than that in the ATR model group (P = 0.001 and P = 0.006). Conclusion: The PC drug pair bidirectionallyadjusted the NEO- and ATR-induced functional dyspepsia in mice by modulating GAS, VIP, and SS levels in theintestine.展开更多
We studied acute and joint toxicity of three different agrochemicals (chlorantraniliprole, flubendiamide-abamectin and penoxsulam) to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles with the method of stabi...We studied acute and joint toxicity of three different agrochemicals (chlorantraniliprole, flubendiamide-abamectin and penoxsulam) to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles with the method of stability water tests. Results showed that the three agrochemicals increased tadpole mortality. For acute toxicity, the LC50 values after 24, 48 and 72 h of chlorantraniliprole, flubendiamide-abamectin and penoxsulam exposure were 5.37, 4.90 and 4.68 mg/L; 0.035, 0.025 and 0.021 rag/L; 1.74, 1.45 and 1.29 mg/L, respectively. The safety concentrations (SC) of chlorantraniliprole, fiubendiamide-abamectin and penoxsulam to the tadpoles were 1.23, 0.30 and 0.003 mg/L, respectively. Based on these findings, chlorantraniliprole and penoxsulam were moderately toxic, while flubendiamide-abamectin was highly toxic. All pairwise joint toxicity tests showed moderate toxicity. The LCs0 values after 24, 48 and 72 h of exposure were 7.08, 6.61 and 6.03 mg/L for chlorantra- niliprole+penoxsulam, with corresponding values of 2.455, 2.328 and 2.183 mg/L for chlorantraniliprole+flubendiamide-abamectin, and 1.132, 1.084 and 1.050 mg/L for penoxsulam+flubendiamide-abamectin, with safe concentrations of 1.73, 0.63 and 0.30 mg/L, respectively. For toxic evaluations of pairwise combinations of the three agrochemicals, only the joint toxicity of chlorantraniliprole and flubendiamide-abamectin after 24 h was found to be synergistic, whereas all other tests were antagonistic. Our findings provide valuable information on the toxic effects of agrochemicals on amphibians and how various types of agrochemicals can be reasonably used in agricultural areas.展开更多
While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship b...While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship by studying the responses of tiger frog (Hoplobatrachus chinensis) tadpoles to simulated hydroperiods (i.e., constant low water levels, constant high water levels, increasing water levels, decreasing water levels, rapid changes in water levels and gradual fluctuations in water levels) in a laboratory setting. ANOVA analysis showed that none of the water level treatments had any significant effect on the total length, body mass, or developmental stages of H. chinensis tadpoles half way through development (11 days old). Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis, whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis. None of the water level treatments had a significant effect on the snout-vent length (SVL) or body mass of H. chinensis tadpoles at Gosner stage 42, or on the body mass of tadpoles at Gosner stage 45. However, the' tadpoles raised in high levels and rapidly fluctuating water levels, significantly larger SVL at Gosner stage 45, while ones under gradually fluctuating water levels had smaller SVL than the other groups. Time to metamorphosis was positively correlated with body size (SVL) at metamorphosis in H. chinensis tadpoles. H. chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments (G-test). Moreover, ANOVA and ACNOVA (with body length as the covariate) indicated that water levels had no significant effect on either the morphology (i.e. head length, head width, forelimb length, hindlimb length and body width) or the jumping ability of juvenile H. chinensis. These results suggest that the observed accelerated metamorphosis and high mortality of H. chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interaetions among increasing conspeeifics.展开更多
Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and ...Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.展开更多
Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants h...Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.展开更多
Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we prese...Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we present an efficacious Agrobacterium tumefaciens-mediated transformation system in somatic embryos of‘Heiye'litchi.This system was developed through the optimization of key variables encompassing explant selection,A.tumefaciens strain delineation,bacterium concentration,infection duration,and infection methodology.The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of LcMYB1,resulting in the generation of transgenic calli.However,the differentiation of transgenic calli into somatic embryos encountered substantial challenges.To delineate the intricate molecular underpinnings of LcMYB1's inhibitory role in somatic embryo induction,a comprehensive transcriptome analysis was conducted that encompassed embryogenic calli(C),globular embryos(G),and transgenic calli(TC).A total of 1,166 common differentially expressed genes(DEGs)were identified between C-vs.-G and C-vs.-TC.Gene Ontology(GO)annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that these common DEGs were mostly related to plant hormone signal transduction pathways.Furthermore,RT-qPCR corroborated the pronounced down-regulation of numerous genes that are associated with somatic embryo induction within the transgenic calli.The development of this transformation system provides valuable support for functional genomics research in litchi.展开更多
文摘Objective: To evaluate the regulatory effects of Banxia (Pinellia ternata, P) and Huanglian (Coptis chinensis, C) drugpair, derived from Banxiaxiexin soup, on the gastrointestinal movement of mice with functional dyspepsia. Methods:Mice were treated with different proportions of the P and C drug pair (1:1, 3:1, and 4:1) for 10 days, and subsequentlyinjected with atropine (ATR) or neostigmine (NEO). The effects of the different proportions of P and C were evaluatedbased on the alvine advance rate. In addition, we used the same modeling method used in the first experiment andadministered P: C at ratio of 3:1 and at different doses respectively (4.68 g/L, 2.34 g/L, and 1.17 g/L), and tested levelsof the gastrointestinal hormones, gastrin (GAS), vasoactive intestinal polypeptide (VIP), and somatostatin (SS) in thesmall intestinal tissue using an enzyme-linked immunosorbent assay. Results: In the groups of NEO-induced mice, P:Cat ratios of 1:1, 3:1, and 4:1 significantly reduced the alvine advance rate compared with the NEO model group (P =0.003, P = 0.012 and P = 0.021, respectively). In the groups of ATR-induced mice, only P:1 at ratio of 3:1 significantlyincreased the alvine advance rate compared with the ATR model group (P = 0.007). After exposure to P: C at ratio of 3:1and at different dose, the GAS level was lower in the low-, medium-, and high-dose NEO groups than that in the NEOmodel group (P = 0.001, P = 0.004, and P = 0.003, respectively). The VIP levels were higher in the medium-andhigh-dose NEO groups than that in the NEO model group (P = 0.004 and P = 0.002, respectively). In addition, the SSlevel increased in the NEO medium-dose group compared with that in the NEO model group (P = 0.002). The GAS levelwas higher in the ATR medium- and high-dose groups than in the ATR model group (P = 0.007 and P = 0.021,respectively). The VIP level was lower in the ATR low-, medium-, and high-dose than that in the ATR model group (P =0.001, P = 0.001, and P = 0.001, respectively). Furthermore, the SS level was lower in the ATR medium- and high-dosegroups than that in the ATR model group (P = 0.001 and P = 0.006). Conclusion: The PC drug pair bidirectionallyadjusted the NEO- and ATR-induced functional dyspepsia in mice by modulating GAS, VIP, and SS levels in theintestine.
基金This work was supported by the National Natural Science Foundation of China (31270443) and the Natural Science Foundation of Zhejiang Province (LY13C030004). Acknowledgements: We would like to thank Fang LIU and Dan WU for their assistance with the experiments.
文摘We studied acute and joint toxicity of three different agrochemicals (chlorantraniliprole, flubendiamide-abamectin and penoxsulam) to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles with the method of stability water tests. Results showed that the three agrochemicals increased tadpole mortality. For acute toxicity, the LC50 values after 24, 48 and 72 h of chlorantraniliprole, flubendiamide-abamectin and penoxsulam exposure were 5.37, 4.90 and 4.68 mg/L; 0.035, 0.025 and 0.021 rag/L; 1.74, 1.45 and 1.29 mg/L, respectively. The safety concentrations (SC) of chlorantraniliprole, fiubendiamide-abamectin and penoxsulam to the tadpoles were 1.23, 0.30 and 0.003 mg/L, respectively. Based on these findings, chlorantraniliprole and penoxsulam were moderately toxic, while flubendiamide-abamectin was highly toxic. All pairwise joint toxicity tests showed moderate toxicity. The LCs0 values after 24, 48 and 72 h of exposure were 7.08, 6.61 and 6.03 mg/L for chlorantra- niliprole+penoxsulam, with corresponding values of 2.455, 2.328 and 2.183 mg/L for chlorantraniliprole+flubendiamide-abamectin, and 1.132, 1.084 and 1.050 mg/L for penoxsulam+flubendiamide-abamectin, with safe concentrations of 1.73, 0.63 and 0.30 mg/L, respectively. For toxic evaluations of pairwise combinations of the three agrochemicals, only the joint toxicity of chlorantraniliprole and flubendiamide-abamectin after 24 h was found to be synergistic, whereas all other tests were antagonistic. Our findings provide valuable information on the toxic effects of agrochemicals on amphibians and how various types of agrochemicals can be reasonably used in agricultural areas.
基金supported by the National Natural Science Foundation of China(31270443,30970435)Technology Plan Project of Lishui(20110426)the College Students Technology Innovation Project in Zhejiang Province(2011R429008)
文摘While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship by studying the responses of tiger frog (Hoplobatrachus chinensis) tadpoles to simulated hydroperiods (i.e., constant low water levels, constant high water levels, increasing water levels, decreasing water levels, rapid changes in water levels and gradual fluctuations in water levels) in a laboratory setting. ANOVA analysis showed that none of the water level treatments had any significant effect on the total length, body mass, or developmental stages of H. chinensis tadpoles half way through development (11 days old). Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis, whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis. None of the water level treatments had a significant effect on the snout-vent length (SVL) or body mass of H. chinensis tadpoles at Gosner stage 42, or on the body mass of tadpoles at Gosner stage 45. However, the' tadpoles raised in high levels and rapidly fluctuating water levels, significantly larger SVL at Gosner stage 45, while ones under gradually fluctuating water levels had smaller SVL than the other groups. Time to metamorphosis was positively correlated with body size (SVL) at metamorphosis in H. chinensis tadpoles. H. chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments (G-test). Moreover, ANOVA and ACNOVA (with body length as the covariate) indicated that water levels had no significant effect on either the morphology (i.e. head length, head width, forelimb length, hindlimb length and body width) or the jumping ability of juvenile H. chinensis. These results suggest that the observed accelerated metamorphosis and high mortality of H. chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interaetions among increasing conspeeifics.
文摘Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.
基金supported by the key project at the central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(Grant number 2060302)the National Natural Science Foundation of China(Grant number 82373982,82173929).
文摘Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.
基金supported by the National Natural Science Foundation of China(31872066 and 32272663)the Science and Technology Planning Project of Guangzhou,China(2023B01J2002)+2 种基金the Key Research and Development Program of Hainan,China(ZDYF2023XDNY052)the Seed Industry Engineering Project of Department of Agriculture and Rural Affairs of Guangdong,China(2022-NPY-00-004 and 2022-NBH00-001)the Litchi Industry Science and Technology Special Mission of Yunnan,China(202204BI090021)。
文摘Litchi has great economic significance as a global fruit crop.However,the advancement of litchi functional genomics has encountered substantial obstacles due to its recalcitrance to stable transformation.Here,we present an efficacious Agrobacterium tumefaciens-mediated transformation system in somatic embryos of‘Heiye'litchi.This system was developed through the optimization of key variables encompassing explant selection,A.tumefaciens strain delineation,bacterium concentration,infection duration,and infection methodology.The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of LcMYB1,resulting in the generation of transgenic calli.However,the differentiation of transgenic calli into somatic embryos encountered substantial challenges.To delineate the intricate molecular underpinnings of LcMYB1's inhibitory role in somatic embryo induction,a comprehensive transcriptome analysis was conducted that encompassed embryogenic calli(C),globular embryos(G),and transgenic calli(TC).A total of 1,166 common differentially expressed genes(DEGs)were identified between C-vs.-G and C-vs.-TC.Gene Ontology(GO)annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that these common DEGs were mostly related to plant hormone signal transduction pathways.Furthermore,RT-qPCR corroborated the pronounced down-regulation of numerous genes that are associated with somatic embryo induction within the transgenic calli.The development of this transformation system provides valuable support for functional genomics research in litchi.