期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Epirubicin-[Anti-HER2/neu] Synthesized with an Epirubicin-(C13-imino)-EMCS Analog: Anti-Neoplastic Activity against Chemotherapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium 被引量:2
1
作者 Cody P. Coyne Toni Jones +2 位作者 Andrzej Sygula John Bailey Lesya Pinchuk 《Journal of Cancer Therapy》 2011年第1期22-39,共18页
Purpose: Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic- resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it’s cytotoxic a... Purpose: Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic- resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it’s cytotoxic anti-neoplastic potency. Methods: In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive properties. Monoclonal immunoglobulin selective for HER2/neu was then thiolated with 2-iminothiolane at the terminal ε-amine group of lysine residues. The sulfhydryl-reactive epirubicin-(C13-imino)-EMCH intermediate was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to characterize the molecular weight profiles while binding of epirubicin-(C13-imino)-[anti-HER2/neu] to membrane receptors was determined by cell-ELISA utilizing populations of SKBr-3 mammary carcinoma that highly over-expresses HER2/neu complexes. Anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/ neu] between the epirubicin-equivalent concentrations of 10–12 M and 10–7 M was determined by vitality staining analysis with and without the presence of selenium (5 μM). Results: Epiribucin-(C13-imino)-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10–8 M to 10–7 M consistently evoked higher anti-neoplastic potency than “free” non- conjugated epirubicin which corresponded with previous investigations utilizing epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-[anti-EGFR]. Selenium at 5 mM consistently enhanced the cytotoxic anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] at epirubicin equivalent concentrations (10–12 to 10–7 M). Conclusions: Epirubicin-(C13-imino)-[anti-HER2/neu] is more potent than epirubicin against chemotherapeutic-resistant SKBr-3 mammary carcinoma and selenium enhances epirubicin-(C13-imino)-[anti-HER2/neu] potency. The methodology applied for synthesizing epirubicin-(C13-imino)-[anti-HER2/neu] is relatively time convenient and has low instrumentation requirements. 展开更多
关键词 Epirubicin-(C13-Imino)-[Anti-HER2/neu] chemotherapeutic-resistant Mammary Carcinoma HER2/NEU Selenium Synthesis
在线阅读 下载PDF
Synthesis of Gemcitabine-(C<sub>4</sub>-<i>amide</i>)-[anti-HER2/<i>neu</i>] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3 被引量:1
2
作者 Cody P. Coyne Toni Jones Ryan Bear 《Journal of Cancer Therapy》 2012年第5期689-711,共23页
Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosp... Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic gemcitabine promote decreases in neoplastic cell proliferation and apoptosis which is frequently found to be effective for the treatment of several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance restricts the utility of gemcitabine in clinical oncology. Selective “targeted” delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing innocient tissues and organ systems exposure to chemotherapy. The molecular design and an organic chemistry based synthesis reaction is described that initially generates a UV-photoactivated gemcitabine intermediate. In a subsequent phase of the synthesis method the UV-photoactivated gemcitabine intermediate is covalently bonded to a monoclonal immunoglobulin yielding an end-product in the form of gemcitabine-(C4-amide)-[anti-HER2/neu]. Analysis by SDS-PAGE/chemiluminescent auto-radiography did not detect evidence of gemcitabine-(C4-amide)-[anti-HER2/neu] polymerization or degradative fragmentation while cell-ELISA demonstrated retained binding-avidity for HER2/neu trophic membrane receptor complexes highly over-expressed by chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Compared to chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), the covalent immunochemotherapeutic, gemcitabine-(C4-amide)-[anti-HER2/neu] is anticipated to exert greater levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epitheliod carcinoma, or leukemia/lymphoid neoplastic cell types based on their reported sensitivity to gemcitabine and gemcitabine covalent conjugates. 展开更多
关键词 GEMCITABINE HER2/NEU UV-Photoactivated Gemcitabine-(C4-amide) Intermediate Organic Chemistry Reaction Gemcitabine-(C4-amide)-[anti-HER2/neu] Covalent Bond Synthesis GEMCITABINE (C5- methylcarbamate)-[anti-HER2/neu] Cytotoxic Anti-Neoplastic Potency chemotherapeutic-resistant Mammary Adenocarcinoma Cell-ELISA SDS-PAGE Immunodetection Chemiluminescent Autoradiography
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部