Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab...Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.展开更多
A causal-directed graphical space-time model has been suggested in which the recurrence phenomena that happen in history and science can be naturally explained. In this Ramsey theorem inspired model, the regular and r...A causal-directed graphical space-time model has been suggested in which the recurrence phenomena that happen in history and science can be naturally explained. In this Ramsey theorem inspired model, the regular and repeated patterns are interpreted as identical or semi-identical space-time causal chains. The “same colored paths and subgraphs” in the classical Ramsey theorem are interpreted as identical or semi-identical causal chains. In the framework of the model, Poincare recurrence and the cosmological recurrence arise naturally. We use Ramsey theorem to prove that there’s always a possibility of predictability no matter how chaotic the system is.展开更多
The distinctions between locality and non-locality as well as causality and excess correlation may be related to coupling between increments of space-time or to the total space-time within the universe as a unit. The ...The distinctions between locality and non-locality as well as causality and excess correlation may be related to coupling between increments of space-time or to the total space-time within the universe as a unit. The most likely candidates for the latter are the proton and the electron when related by Minkowski’s space-time. When two velocities: light in a vacuum for locality and the “entanglement” velocity based upon parameters that define the universe for non-locality, are considered the two times required to produce identities for the -v<sup>2</sup>t<sup>2</sup> components are frequencies whose energies approximate the neutral hydrogen line (primarily associated with shifts in electron spin direction) and the mass equivalence of a proton. The values for the additional three spatial dimensions required to produce a solution whose square root is not imaginary and greater than zero are within the domains of the surface areas of the human cerebrum. Detailed calculations converge to show that the proportions of energy that represent the electron’s Compton energy and the proton’s mass equivalent may be central to the condition of excess correlation within the cerebral volume. Proton channels within the neuronal cell plasma membranes whose pH-dependent specific currents produce the required magnetic field strengths could be the physical substrates by which excess correlations between brain activities of human subjects separated by non-local distances might occur. If protons are considered as the basic Eddington (number) units of the universe then Mach’s principle that any component of the universe is determined by all of its components may be testable empirically.展开更多
The proposed work handles the concept of fuzzy space as a set of real numbers with a set finite membership function. Extending standard arithmetic operations through a fuzzy space, the fuzzy Green’s function is creat...The proposed work handles the concept of fuzzy space as a set of real numbers with a set finite membership function. Extending standard arithmetic operations through a fuzzy space, the fuzzy Green’s function is created here with an analysis of its behavior inside and outside the light cone. The fuzzy causality principle is generalized to field models. Also, this work demonstrates the ability to use fuzzy space to regularize divergences in quantum field theory. The passage to the limit to a system of interacting particles enables the obtaining of the dissipative projection operator, represented earlier. The Liouville equation is solved here by successive approximations in the range of times much larger than the typical scale of fuzziness, by assuming the interaction as a small parameter. As well, here was applied the standard diagram technique.展开更多
文摘Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.
文摘A causal-directed graphical space-time model has been suggested in which the recurrence phenomena that happen in history and science can be naturally explained. In this Ramsey theorem inspired model, the regular and repeated patterns are interpreted as identical or semi-identical space-time causal chains. The “same colored paths and subgraphs” in the classical Ramsey theorem are interpreted as identical or semi-identical causal chains. In the framework of the model, Poincare recurrence and the cosmological recurrence arise naturally. We use Ramsey theorem to prove that there’s always a possibility of predictability no matter how chaotic the system is.
文摘The distinctions between locality and non-locality as well as causality and excess correlation may be related to coupling between increments of space-time or to the total space-time within the universe as a unit. The most likely candidates for the latter are the proton and the electron when related by Minkowski’s space-time. When two velocities: light in a vacuum for locality and the “entanglement” velocity based upon parameters that define the universe for non-locality, are considered the two times required to produce identities for the -v<sup>2</sup>t<sup>2</sup> components are frequencies whose energies approximate the neutral hydrogen line (primarily associated with shifts in electron spin direction) and the mass equivalence of a proton. The values for the additional three spatial dimensions required to produce a solution whose square root is not imaginary and greater than zero are within the domains of the surface areas of the human cerebrum. Detailed calculations converge to show that the proportions of energy that represent the electron’s Compton energy and the proton’s mass equivalent may be central to the condition of excess correlation within the cerebral volume. Proton channels within the neuronal cell plasma membranes whose pH-dependent specific currents produce the required magnetic field strengths could be the physical substrates by which excess correlations between brain activities of human subjects separated by non-local distances might occur. If protons are considered as the basic Eddington (number) units of the universe then Mach’s principle that any component of the universe is determined by all of its components may be testable empirically.
文摘The proposed work handles the concept of fuzzy space as a set of real numbers with a set finite membership function. Extending standard arithmetic operations through a fuzzy space, the fuzzy Green’s function is created here with an analysis of its behavior inside and outside the light cone. The fuzzy causality principle is generalized to field models. Also, this work demonstrates the ability to use fuzzy space to regularize divergences in quantum field theory. The passage to the limit to a system of interacting particles enables the obtaining of the dissipative projection operator, represented earlier. The Liouville equation is solved here by successive approximations in the range of times much larger than the typical scale of fuzziness, by assuming the interaction as a small parameter. As well, here was applied the standard diagram technique.