The insect order Thysanoptera is used as an indicator of the vulnerability to foreign insect invasions of New Caledonian ecosystems—both the unique natural systems, and the agricultural and horticultural systems on w...The insect order Thysanoptera is used as an indicator of the vulnerability to foreign insect invasions of New Caledonian ecosystems—both the unique natural systems, and the agricultural and horticultural systems on which the economy is dependent. A total of 103 species in 67 genera of Thysanoptera are here listed from New Caledonia, in contrast to the 68 species in 44 genera that were recorded 23 years ago. Of the 103 species, 22 are not known from anywhere else in the world. Thus, up to 80% of these insect species have arrived in New Caledonia from other countries, with a very high proportion likely to have been introduced through modern trading patterns, despite vigorous efforts by quarantine services.展开更多
The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical dat...The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.展开更多
Covered by ultrabasic units for more than a third of its surface,the New Caledonia(South West Pacific)is one of the largest world producers of Ni-ore from lateritic deposits.Almost all outcrops of geological units and...Covered by ultrabasic units for more than a third of its surface,the New Caledonia(South West Pacific)is one of the largest world producers of Ni-ore from lateritic deposits.Almost all outcrops of geological units and open mines contain serpentine and amphibole,also as asbestos varieties.In this geological context,in which weathering processes had a great contribution in the production and dispersion of mineral fibres into the environment,the development of a routinely analytical strategy,able to discriminate an asbestiform fibre from a non-harmful particle,is a pivotal requisite.However,the acquisition of all these parameters is necessary for determining the risk associated to fibres exposition.A multidisciplinary routinely approach,based on the use of complementary simply-to-use but reliable analytical methods is the only possible strategy.In addition,the instrumental apparatus must be easily transportable on the field,directly on the mining site.The employment of specialized tools such as Polarized Light Microscopy associated to Dispersion Staining method(PLM/DS)and portable Raman spectroscopy for identification of environmental asbestos,are proved extremely effective in the improvement of the performance and rapidity of data acquisition and interpretation.Both PLM/DS and handheld Raman devices confirmed to be discriminant in the detection and characterization of asbestos fibres for both serpentine and amphibole.Furthermore,these techniques proved extremely effective even in the presence of strongly fibrous and altered samples.展开更多
Throughout the Phanerozoic the eastern margin of Gondwana and related fragments such as New Caledonia and New Zealand that are now dispersed from it grew through the addition of ophiolites and associated intra-oceanic...Throughout the Phanerozoic the eastern margin of Gondwana and related fragments such as New Caledonia and New Zealand that are now dispersed from it grew through the addition of ophiolites and associated intra-oceanic island arc assemblages.Exactly how and why this occurred remains controversial with two main competingmodelsreferredtoaseither‘quantum’or‘accordion’tectonics.The quantum model envisages continental growth through the additional of discrete intra-oceanic assemblages analogous to contemporary tectonic settings in Taiwan,Timor and Papua New Guinea(Aitchison and Buckman,2012).The alternative regards eastern Australia as the type example of a different style of convergent plate margin referred to as an‘extensional accretionary orogeny’(Collins,2002).The oldest Phanerozoic ophiolites and intra-oceanic island arc assemblages are of Cambrian age and are widely reported from the Lachlan Fold Belt in the eastern Australian states of Victoria and NSW(Spaggiari et al.,2003;Greenfield et al.,2011).Similar rocks are also known from Mount Read in Tasmania(Berry and Crawford,1988;Crawford and Berry,1992;Mulder et al.,2016),the Weraerai terrane and its correlatives in the New England orogen further east in northeastern NSW(Aitchison et al.,1994;Aitchison and Ireland,1995)and Queensland,the Takaka terrane in NW Nelson,New Zealand(Münker and Cooper,1999)and the Bowers terrane in Northern Victoria Land,Antarctica(Weaver et al.,1984;Münker and Crawford,2000;Rocchi et al.,2011;Palmeri et al.,2012).The Late Ordovician saw the development of the intra-oceanic Macquarie island arc(Glen et al.,1998;Glen et al.,2007).This system contains important economic mineral deposits.The way in which these arcrocks developed and were juxtaposedagainst a surrounding suite of Lachlan Fold Belt,eastern Australia remains the subject of investigation(see Aitchison and Buckman,2012 for discussion).In a similar area,enigmatic rocks of the Tumut ophiolite also crop out(Graham et al.,1996;Belousova et al.,2015).Further to the east in the New England orogeny Siluro-Devonian rocks of the Gamilaroi terrane and it’s along strike correlatives near Mt Morgan in Queensland represent another intra-oceanic island arc assemblage emplaced onto the Gondwana margin in the Late Devonian(Aitchison and Flood,1994;Offler and Murray,2011).The Late Carboniferous-Permian saw development of significant intra-oceanic island arc and ophiolitic complexes remnants of which crop out in New Zealand,eastern Australia,and New Caledonia.These include the Brook Street terrane(Spandler et al.,2005;Mc Coy-West et al.,2014)and Dun Mountain Ophiolite Belt in New Zealand(Coombs et al.,1976;Stewart et al.,2016),the Gympie terrane in southeast Queensland(Waterhouse and Sivell,1987;Sivell and Waterhouse,1988)and the Koh terrane in New Caledonia(Meffre et al.,1996;Ali and Aitchison,2002).The youngest on-land association of ophiolitic and intra-oceanic island arc rocks in the region is of Eocene age.Ultramafic rocks are well exposed in New Caledonia where they structurally overlie continental rocks of Gondwana margin affinity that,in the northeast of the island,have experienced eclogite facies metamorphism(Aitchison et al.,1995).The emplacement of these rocks was a widespread regional event with potentially correlative rocks exposed in Papua New Guinea(Parrot and Dugas,1980)as well as Northland and East Cape in New Zealand(Whattam et al.,2005;Whattam et al.,2008).展开更多
The competition between coral and algae in marine reefs is pervasive through geologic time;that competition determines the structure and composition of reef communities, which we see in the fossil record. However, the...The competition between coral and algae in marine reefs is pervasive through geologic time;that competition determines the structure and composition of reef communities, which we see in the fossil record. However, the relationships between coral and calcareous algae in reefs are poorly understood. To study this relationship, several hand samples and thin sections were examined from nine different foralgal reef localities around the world. Foralgal reefs typically extend from about 20 m depth or shallower on the seaward side of the reef. The first section is Salt Mountain, Alabama, which preserves a Paleocene reef. It contains a high percentage of red coralline algae with benthic foraminifera. The second section is IDOP-U1376, IIA Limestone, it is Middle Eocene, in the form of an isolated reef sandwiched between two igneous beds. The third section is the Utoe’ Limestone, New Caledonia, it is Middle Eocene in age and is composed mainly of grain-boundstone units with some igneous interlayered. The fourth section is the Darnah Formation in the West-Darnah roadcut section, Northeast Libya, it is Middle Eocene in age, it is composed of highly fossiliferous limestone (corals, red coralline algae, echinoids, mollusks, foraminifers, and bryozoans). The fifth section, the Al Bayda Formation (Algal Limestone Member) in Northeast Libya, is in the Drayanah—Al Abyar roadcut, Northeast Libya, it has several species of algae but also includes a high percentage of buildups of coral species. The sixth section is the Oligo-Miocene Al Faidiyah Formation (Al Fatayah Cement Quarry) limestone unit in Northeast Libya. The seventh section is (Core-core 20) late-early to middle Miocene Limestone Unit-Cicuco Field, NW Colombia. The eighth section is the Benghazi Formation at Benghazi Cement Quarry, in Northeast Libya, it is fossiliferous limestone, consisting of coral, algae, mollusks, and echinoids. The ninth and tenth sections are Quaternary reefs in the Bahamas and the Florida Keys, respectively. These reefs contain a high percentage of coral, red coralline algae, echinoids, mollusks, foraminifers, and ostracods. Based on the data and static analysis results on the thin sections and hand specimens, this study determines the occurrence and outcomes of coral-algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary). The Early Paleogene (Paleocene to Eocene) has the highest percentage of algae in two forms (crustose and frondose), which is a good indicator of a warm climate. In the Middle Eocene to Late Eocene, coral replaced algae in different localities in sections of that age. This change is an indicator of climatic cooling, especially in the western Lutetian Darnah section. In the Oligocene time, high-branching corals became abundant and escaped competition with the algae due to Icehouse conditions, as shown in the Al Bayda Formation. In the Miocene, coral species started to decline because of the return to Greenhouse conditions. Coral can lose its competitive edge when chemical and physical defense systems reduce growth and production due to warming. On the other hand, crustose-form algae attract the larvae of the coral. Algae induce them to get a more highly competitive frondose form, which is useful for corals as they decrease growth and production. Algae can quickly colonize the dead reef by using the firm substrate to rebuild themselves. This research may prove valuable when predicting the response of modern coral reef systems to future climatic warming conditions and provides a model for what future reefs may look like.展开更多
The sub-arc mantle that experienced hydrous melting is commonly characterized by refractory geochemical compositions. Nevertheless, minor lherzolites with fertile compositions have also been reported for mantle perido...The sub-arc mantle that experienced hydrous melting is commonly characterized by refractory geochemical compositions. Nevertheless, minor lherzolites with fertile compositions have also been reported for mantle peridotites from subduction zone. The petrogenesis and mantle source of the lherzolites are still controversial. The New Caledonia ophiolite(Peridotite Nappe) has been regarded as an allochthonous body of forearc lithosphere. This is supported by refractory compositions of its dominant mantle rocks.A few isolated lherzolitic massifs have also been observed in the northern part of New Caledonia.Those lherzolites are compositionally similar to abyssal peridotites, with negligible subduction-related modification. Here, we present new comprehensive geochemical compositions, in particular highprecision Sr-Nd-Hf isotope data, for the lherzolites. The initial^(176) Hf/^(177) Hf ratios display moderate correlations with sensitive indicators for the extent of melting(i.e., olivine Fo, whole-rock Mg# and Yb contents in clinopyroxene) and whole-rock initial^(187) Os/^(188) Os ratios. Some samples have ancient radiogenic Hf isotopes and unradiogenic Os isotope compositions, implying the preservation of ancient depletion signals in the lherzolites. The Nd isotope compositions, together with trace elements and mineral micro-textures, suggest that the lherzolites have been overprinted by a recent melt-rock interaction event. The high equilibrium temperatures of the studied samples have been estimated by the twopyroxene REE thermometer, yielding temperatures of 1066–1315 ℃. The lherzolites have more depleted Nd-Hf isotope compositions and higher equilibrium temperatures than the New Caledonia harzburgites.This indicates that the lherzolites may represent the residues of asthenosphere mantle trapped within the forearc region. Our studies on the New Caledonia lherzolites with ancient depletion signals suggest that ancient mantle domains in the convective mantle can be emplaced in forearc region by the upwelling of asthenosphere during the early stage of subduction initiation.展开更多
文摘The insect order Thysanoptera is used as an indicator of the vulnerability to foreign insect invasions of New Caledonian ecosystems—both the unique natural systems, and the agricultural and horticultural systems on which the economy is dependent. A total of 103 species in 67 genera of Thysanoptera are here listed from New Caledonia, in contrast to the 68 species in 44 genera that were recorded 23 years ago. Of the 103 species, 22 are not known from anywhere else in the world. Thus, up to 80% of these insect species have arrived in New Caledonia from other countries, with a very high proportion likely to have been introduced through modern trading patterns, despite vigorous efforts by quarantine services.
基金supported by a Vinci grant (Italian-French University) and by Italian-PRIN prot.2015C5LN35
文摘The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.
基金supported by the CNRT "Nickel and its environment" of New Caledonia
文摘Covered by ultrabasic units for more than a third of its surface,the New Caledonia(South West Pacific)is one of the largest world producers of Ni-ore from lateritic deposits.Almost all outcrops of geological units and open mines contain serpentine and amphibole,also as asbestos varieties.In this geological context,in which weathering processes had a great contribution in the production and dispersion of mineral fibres into the environment,the development of a routinely analytical strategy,able to discriminate an asbestiform fibre from a non-harmful particle,is a pivotal requisite.However,the acquisition of all these parameters is necessary for determining the risk associated to fibres exposition.A multidisciplinary routinely approach,based on the use of complementary simply-to-use but reliable analytical methods is the only possible strategy.In addition,the instrumental apparatus must be easily transportable on the field,directly on the mining site.The employment of specialized tools such as Polarized Light Microscopy associated to Dispersion Staining method(PLM/DS)and portable Raman spectroscopy for identification of environmental asbestos,are proved extremely effective in the improvement of the performance and rapidity of data acquisition and interpretation.Both PLM/DS and handheld Raman devices confirmed to be discriminant in the detection and characterization of asbestos fibres for both serpentine and amphibole.Furthermore,these techniques proved extremely effective even in the presence of strongly fibrous and altered samples.
文摘Throughout the Phanerozoic the eastern margin of Gondwana and related fragments such as New Caledonia and New Zealand that are now dispersed from it grew through the addition of ophiolites and associated intra-oceanic island arc assemblages.Exactly how and why this occurred remains controversial with two main competingmodelsreferredtoaseither‘quantum’or‘accordion’tectonics.The quantum model envisages continental growth through the additional of discrete intra-oceanic assemblages analogous to contemporary tectonic settings in Taiwan,Timor and Papua New Guinea(Aitchison and Buckman,2012).The alternative regards eastern Australia as the type example of a different style of convergent plate margin referred to as an‘extensional accretionary orogeny’(Collins,2002).The oldest Phanerozoic ophiolites and intra-oceanic island arc assemblages are of Cambrian age and are widely reported from the Lachlan Fold Belt in the eastern Australian states of Victoria and NSW(Spaggiari et al.,2003;Greenfield et al.,2011).Similar rocks are also known from Mount Read in Tasmania(Berry and Crawford,1988;Crawford and Berry,1992;Mulder et al.,2016),the Weraerai terrane and its correlatives in the New England orogen further east in northeastern NSW(Aitchison et al.,1994;Aitchison and Ireland,1995)and Queensland,the Takaka terrane in NW Nelson,New Zealand(Münker and Cooper,1999)and the Bowers terrane in Northern Victoria Land,Antarctica(Weaver et al.,1984;Münker and Crawford,2000;Rocchi et al.,2011;Palmeri et al.,2012).The Late Ordovician saw the development of the intra-oceanic Macquarie island arc(Glen et al.,1998;Glen et al.,2007).This system contains important economic mineral deposits.The way in which these arcrocks developed and were juxtaposedagainst a surrounding suite of Lachlan Fold Belt,eastern Australia remains the subject of investigation(see Aitchison and Buckman,2012 for discussion).In a similar area,enigmatic rocks of the Tumut ophiolite also crop out(Graham et al.,1996;Belousova et al.,2015).Further to the east in the New England orogeny Siluro-Devonian rocks of the Gamilaroi terrane and it’s along strike correlatives near Mt Morgan in Queensland represent another intra-oceanic island arc assemblage emplaced onto the Gondwana margin in the Late Devonian(Aitchison and Flood,1994;Offler and Murray,2011).The Late Carboniferous-Permian saw development of significant intra-oceanic island arc and ophiolitic complexes remnants of which crop out in New Zealand,eastern Australia,and New Caledonia.These include the Brook Street terrane(Spandler et al.,2005;Mc Coy-West et al.,2014)and Dun Mountain Ophiolite Belt in New Zealand(Coombs et al.,1976;Stewart et al.,2016),the Gympie terrane in southeast Queensland(Waterhouse and Sivell,1987;Sivell and Waterhouse,1988)and the Koh terrane in New Caledonia(Meffre et al.,1996;Ali and Aitchison,2002).The youngest on-land association of ophiolitic and intra-oceanic island arc rocks in the region is of Eocene age.Ultramafic rocks are well exposed in New Caledonia where they structurally overlie continental rocks of Gondwana margin affinity that,in the northeast of the island,have experienced eclogite facies metamorphism(Aitchison et al.,1995).The emplacement of these rocks was a widespread regional event with potentially correlative rocks exposed in Papua New Guinea(Parrot and Dugas,1980)as well as Northland and East Cape in New Zealand(Whattam et al.,2005;Whattam et al.,2008).
文摘The competition between coral and algae in marine reefs is pervasive through geologic time;that competition determines the structure and composition of reef communities, which we see in the fossil record. However, the relationships between coral and calcareous algae in reefs are poorly understood. To study this relationship, several hand samples and thin sections were examined from nine different foralgal reef localities around the world. Foralgal reefs typically extend from about 20 m depth or shallower on the seaward side of the reef. The first section is Salt Mountain, Alabama, which preserves a Paleocene reef. It contains a high percentage of red coralline algae with benthic foraminifera. The second section is IDOP-U1376, IIA Limestone, it is Middle Eocene, in the form of an isolated reef sandwiched between two igneous beds. The third section is the Utoe’ Limestone, New Caledonia, it is Middle Eocene in age and is composed mainly of grain-boundstone units with some igneous interlayered. The fourth section is the Darnah Formation in the West-Darnah roadcut section, Northeast Libya, it is Middle Eocene in age, it is composed of highly fossiliferous limestone (corals, red coralline algae, echinoids, mollusks, foraminifers, and bryozoans). The fifth section, the Al Bayda Formation (Algal Limestone Member) in Northeast Libya, is in the Drayanah—Al Abyar roadcut, Northeast Libya, it has several species of algae but also includes a high percentage of buildups of coral species. The sixth section is the Oligo-Miocene Al Faidiyah Formation (Al Fatayah Cement Quarry) limestone unit in Northeast Libya. The seventh section is (Core-core 20) late-early to middle Miocene Limestone Unit-Cicuco Field, NW Colombia. The eighth section is the Benghazi Formation at Benghazi Cement Quarry, in Northeast Libya, it is fossiliferous limestone, consisting of coral, algae, mollusks, and echinoids. The ninth and tenth sections are Quaternary reefs in the Bahamas and the Florida Keys, respectively. These reefs contain a high percentage of coral, red coralline algae, echinoids, mollusks, foraminifers, and ostracods. Based on the data and static analysis results on the thin sections and hand specimens, this study determines the occurrence and outcomes of coral-algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary). The Early Paleogene (Paleocene to Eocene) has the highest percentage of algae in two forms (crustose and frondose), which is a good indicator of a warm climate. In the Middle Eocene to Late Eocene, coral replaced algae in different localities in sections of that age. This change is an indicator of climatic cooling, especially in the western Lutetian Darnah section. In the Oligocene time, high-branching corals became abundant and escaped competition with the algae due to Icehouse conditions, as shown in the Al Bayda Formation. In the Miocene, coral species started to decline because of the return to Greenhouse conditions. Coral can lose its competitive edge when chemical and physical defense systems reduce growth and production due to warming. On the other hand, crustose-form algae attract the larvae of the coral. Algae induce them to get a more highly competitive frondose form, which is useful for corals as they decrease growth and production. Algae can quickly colonize the dead reef by using the firm substrate to rebuild themselves. This research may prove valuable when predicting the response of modern coral reef systems to future climatic warming conditions and provides a model for what future reefs may look like.
基金financially supported by the National Natural Science Foundation of China (Grant 41902061)the Opening Foun-dation of the Laboratory for Marine Geology Qingdao National Laboratory for Marine Science and Technology (Grant MGQNLMKF201813)the China Postdoctoral Science Foundation (Grant2019M652292)。
文摘The sub-arc mantle that experienced hydrous melting is commonly characterized by refractory geochemical compositions. Nevertheless, minor lherzolites with fertile compositions have also been reported for mantle peridotites from subduction zone. The petrogenesis and mantle source of the lherzolites are still controversial. The New Caledonia ophiolite(Peridotite Nappe) has been regarded as an allochthonous body of forearc lithosphere. This is supported by refractory compositions of its dominant mantle rocks.A few isolated lherzolitic massifs have also been observed in the northern part of New Caledonia.Those lherzolites are compositionally similar to abyssal peridotites, with negligible subduction-related modification. Here, we present new comprehensive geochemical compositions, in particular highprecision Sr-Nd-Hf isotope data, for the lherzolites. The initial^(176) Hf/^(177) Hf ratios display moderate correlations with sensitive indicators for the extent of melting(i.e., olivine Fo, whole-rock Mg# and Yb contents in clinopyroxene) and whole-rock initial^(187) Os/^(188) Os ratios. Some samples have ancient radiogenic Hf isotopes and unradiogenic Os isotope compositions, implying the preservation of ancient depletion signals in the lherzolites. The Nd isotope compositions, together with trace elements and mineral micro-textures, suggest that the lherzolites have been overprinted by a recent melt-rock interaction event. The high equilibrium temperatures of the studied samples have been estimated by the twopyroxene REE thermometer, yielding temperatures of 1066–1315 ℃. The lherzolites have more depleted Nd-Hf isotope compositions and higher equilibrium temperatures than the New Caledonia harzburgites.This indicates that the lherzolites may represent the residues of asthenosphere mantle trapped within the forearc region. Our studies on the New Caledonia lherzolites with ancient depletion signals suggest that ancient mantle domains in the convective mantle can be emplaced in forearc region by the upwelling of asthenosphere during the early stage of subduction initiation.