期刊文献+
共找到153,727篇文章
< 1 2 250 >
每页显示 20 50 100
基于CPSO-BP神经网络的风电并网暂态电压稳定评估 被引量:23
1
作者 张晓英 史冬雪 +2 位作者 张琎 王琨 陈伟 《智慧电力》 北大核心 2021年第10期38-44,共7页
针对目前传统方法难以快速、准确判断风电并网后系统暂态电压稳定性的问题,提出了一种基于CPSOBP组合的风电并网暂态电压稳定评估方法。首先采用混沌理论对粒子群算法的不足进行改善,应用改进后的算法对神经网络的初始权值和阈值进行优... 针对目前传统方法难以快速、准确判断风电并网后系统暂态电压稳定性的问题,提出了一种基于CPSOBP组合的风电并网暂态电压稳定评估方法。首先采用混沌理论对粒子群算法的不足进行改善,应用改进后的算法对神经网络的初始权值和阈值进行优化,然后利用系统故障前后采集的传统物理量和风电场相关的物理量作为BP神经网络输入特征量进行监督学习,最后将训练得到的模型应用于风电并网系统的暂态电压稳定评估中。利用英格兰10机39节点系统标准算例进行风电并网仿真分析,结果证明了所提方法的有效性。 展开更多
关键词 风电 cpso-bp神经网络 输入特征 暂态电压稳定评估
在线阅读 下载PDF
基于CPSO-BP神经网络的冲击地压预测 被引量:4
2
作者 尹增德 王来河 柳岩妮 《煤炭技术》 CAS 北大核心 2016年第8期89-91,共3页
针对预测冲击地压的传统方法存在的弊端,提出了一种基于混沌(Chaos)优化粒子群的BP神经网络算法。该算法将混沌、粒子群、BP神经网络结合起来,通过混沌粒子群算法寻优得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。该... 针对预测冲击地压的传统方法存在的弊端,提出了一种基于混沌(Chaos)优化粒子群的BP神经网络算法。该算法将混沌、粒子群、BP神经网络结合起来,通过混沌粒子群算法寻优得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。该算法对冲击地压的预测取得了较好的效果。 展开更多
关键词 混沌 BP神经网络 冲击地压
在线阅读 下载PDF
基于CPSO-BP神经网络的柴油机排气门间隙故障诊断 被引量:5
3
作者 李岩 袁惠群 +1 位作者 梁明轩 赵天宇 《中国工程机械学报》 2014年第1期56-61,共6页
针对柴油机排气门间隙故障信号不易提取的特点,提出了将混沌粒子群神经网(Chaotic particle swarm optimization-Back Propagation,CPSO-BP)聚类模型应用于柴油机排气门间隙故障诊断.首先,采用经验模式分解(Empirical Mode Decompositio... 针对柴油机排气门间隙故障信号不易提取的特点,提出了将混沌粒子群神经网(Chaotic particle swarm optimization-Back Propagation,CPSO-BP)聚类模型应用于柴油机排气门间隙故障诊断.首先,采用经验模式分解(Empirical Mode Decomposition,EMD)对柴油机振动信号进行分解,将得到的前6个模态函数能量百分比作为反映故障状态的特征参数,重构BP神经网并用混沌粒子群算法对其结构和权值进行优化;最后,基于优化的神经网对排气门间隙为0.2mm,0.4mm,0.6mm等3种故障工况的信号进行聚类.结果表明:所有样本的测试结果均与实际状况一致,该方法可以较好地用于排气门间隙故障诊断. 展开更多
关键词 柴油机 故障诊断 经验模态分解 神经网络 混沌粒子群算法
在线阅读 下载PDF
一种改进的CPSO-BP神经网络故障诊断技术研究 被引量:6
4
作者 王慧 董增寿 张春梅 《太原科技大学学报》 2013年第5期342-347,共6页
针对BP神经网络对液压泵进行故障诊断时存在收敛速度慢、诊断精度不高的问题,文中提出了一种CPSO-BP诊断网络。该网络用混沌运动对PSO算法进行改进,构成CPSO算法,克服了PSO算法早熟的缺点。然后采用CPSO算法对BP网络的权值及阈值进行优... 针对BP神经网络对液压泵进行故障诊断时存在收敛速度慢、诊断精度不高的问题,文中提出了一种CPSO-BP诊断网络。该网络用混沌运动对PSO算法进行改进,构成CPSO算法,克服了PSO算法早熟的缺点。然后采用CPSO算法对BP网络的权值及阈值进行优化,用该网络对柱塞泵的常见故障进行诊断,并与PSO-BP网络的诊断结果进行比较。实验表明该网络的故障诊断能力及诊断精度都得到了有效的提高。 展开更多
关键词 液压泵 故障诊断 混沌 粒子群算法 BP神经网络
在线阅读 下载PDF
基于CPSO-BP神经网络-PID的热熔胶机温控系统研究 被引量:6
5
作者 王莉 张士兵 《工程设计学报》 CSCD 北大核心 2017年第5期588-594,共7页
针对热熔胶机加热温度存在惯性大、滞后性强、非线性等缺点,且常规PID控制难以达到温控要求,提出了一种基于CPSO-BP神经网络的PID控制器参数自适应调整算法。该算法先用CPSO算法将BP神经网络的初始权值和阈值优化到全局极小点附近,然后... 针对热熔胶机加热温度存在惯性大、滞后性强、非线性等缺点,且常规PID控制难以达到温控要求,提出了一种基于CPSO-BP神经网络的PID控制器参数自适应调整算法。该算法先用CPSO算法将BP神经网络的初始权值和阈值优化到全局极小点附近,然后用传统BP神经网络学习算法在线调整PID参数。采用MATLAB对设计的CPSO-BP神经网络-PID控制器进行了温控系统仿真分析,仿真结果显示该控制器可实现对热熔胶机温度的精确控制,具有良好的自适应性和鲁棒性;实验测得采用CPSO-BP神经网络-PID控制器的温控系统能够在3.5min内达到设定温度,温控精度为±2.5℃。CPSO-BP神经网络-PID控制器作为嵌入式系统的一个控制单元,已投入热熔胶机温控系统实际应用,使用效果表明:温控系统性能稳定,温控精度高,有效实现了热熔胶机加热温度的自动控制,具有良好的实际应用及推广价值。 展开更多
关键词 热熔胶机 CPSO算法 BP神经网络 PID 温控系统
在线阅读 下载PDF
基于CPSO-BP神经网络的PM2.5浓度预测模型 被引量:6
6
作者 张立 王腾军 +1 位作者 刘帅令 方珂 《甘肃科学学报》 2020年第2期47-50,62,共5页
为了提高大气中PM2.5浓度的预测精度,采用平均影响值(MIV)算法筛选出对大气中PM2.5浓度有影响的主要变量,并依次作为神经网络输入变量。利用混沌粒子学(CPSO)算法修正BP神经网络初始权值和阈值,优化BP神经网络机构,以达到提高预测模型... 为了提高大气中PM2.5浓度的预测精度,采用平均影响值(MIV)算法筛选出对大气中PM2.5浓度有影响的主要变量,并依次作为神经网络输入变量。利用混沌粒子学(CPSO)算法修正BP神经网络初始权值和阈值,优化BP神经网络机构,以达到提高预测模型精度的目的。以2017年西安市PM2.5日均浓度数据为样本建立预测模型,实验结果表明:相比于传统BP神经网络,基于CPSO-BP神经网络预测性能更优。 展开更多
关键词 平均影响值算法 混沌粒子群 BP神经网络 浓度预测
在线阅读 下载PDF
ACPSO-BP神经网络在矿井突水水源判别中的应用 被引量:8
7
作者 徐星 李垣志 +1 位作者 田坤云 张瑞林 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第6期91-101,共11页
矿井多年来的连续开采使各含水层水质特征变得更加复杂、更为接近,应用经典数学方法难以建立精确的判别模型,使用具有非线性映射功能的BP神经网络可以克服以上问题,但其仍然具有易陷入局部最优和收敛速度慢缺点。通过将"早熟"... 矿井多年来的连续开采使各含水层水质特征变得更加复杂、更为接近,应用经典数学方法难以建立精确的判别模型,使用具有非线性映射功能的BP神经网络可以克服以上问题,但其仍然具有易陷入局部最优和收敛速度慢缺点。通过将"早熟"判断机制、Tent混沌映射以及权重自适应调整策略引入粒子群算法中,建立基于自适应混沌粒子群算法和BP(ACPSO-BP)神经网络突水水源判别模型,应用结果表明:与BP神经网络模型、基于标准粒子群算法和BP(SPSO-BP)神经网络模型相比,ACPSO-BP神经网络模型具有收敛速度快、精度高和泛化能力强的特点。 展开更多
关键词 突水水源 BP神经网络 SPSO算法 自适应变异 Tent混沌映射
在线阅读 下载PDF
飞机舱门收放系统CPSO-BP神经网络故障仿真与诊断
8
作者 王强 吴伟 +2 位作者 刘东 娄华语 王良模 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期293-299,共7页
针对民机舱门收放系统故障模拟代价大、故障数据少、故障诊断精度低的问题,提出基于CPSO-BP神经网络的飞机舱门收放系统故障诊断方法。根据民机舱门系统工作特性和高发故障的情况,确定流量控制阀磨损、液压马达泄漏、液压油污染和节流... 针对民机舱门收放系统故障模拟代价大、故障数据少、故障诊断精度低的问题,提出基于CPSO-BP神经网络的飞机舱门收放系统故障诊断方法。根据民机舱门系统工作特性和高发故障的情况,确定流量控制阀磨损、液压马达泄漏、液压油污染和节流阀阻塞4种典型故障模式;建立飞机舱门AMESim收放系统仿真模型,通过典型故障的仿真分析获得120组故障数据,构建包含29520个样本的故障数据集;采用BP神经网络进行故障诊断,其平均诊断正确率仅为85.36%。采用混沌粒子群算法(CPSO)优化BP神经网络的初始权重和阈值,故障诊断正确率达到93%,提高了飞机舱门收放系统的故障诊断正确率。 展开更多
关键词 故障诊断 AMESIM 飞机舱门收放系统 BP神经网络 混沌粒子群优化算法(CPSO)
在线阅读 下载PDF
基于ICPSO-BP神经网络的光纤SPR传感器开环系统优化研究 被引量:2
9
作者 付丽辉 戴峻峰 《量子电子学报》 CAS CSCD 北大核心 2022年第4期662-675,共14页
表面等离子共振(SPR)传感器开环系统的弊端,对全局搜索粒子群算法(PSO)的早熟收敛问题进行改进,提出了一种动态信息调整且速度可控的改进型合作粒子群算法(ICPSO)。该方法通过在粒子飞行状态控制的迭代方程中引入子群最优信息,较好地保... 表面等离子共振(SPR)传感器开环系统的弊端,对全局搜索粒子群算法(PSO)的早熟收敛问题进行改进,提出了一种动态信息调整且速度可控的改进型合作粒子群算法(ICPSO)。该方法通过在粒子飞行状态控制的迭代方程中引入子群最优信息,较好地保持了粒子多样性,有效地避免寻优飞行中粒子的早熟收敛。进一步将该算法作为BP神经网络的训练算法,建立了更为优化的ICPSO-BP神经网络。最后,利用ICPSO-BP神经网络对光纤SPR开环系统的内部非线性模型进行辨识补偿,分别建立单输入、双输入、三输入的ICPSO-BP神经网络补偿模型,实验及仿真结果表明新算法在测试线性精度和速度上均具有较好的表现,从而保证了光纤SPR良好的线性测试效果,为光纤SPR传感器进一步应用打下一定基础。 展开更多
关键词 光纤光学 光纤传感器 表面等离子共振效应 粒子群算法 神经网络 开环系统
在线阅读 下载PDF
基于神经网络模型的煤层气产能预测研究
10
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 LSTM神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别
11
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于FS-SIA的毁伤预测神经网络超参数优化方法
12
作者 佘维 吕钟毓 +3 位作者 邢召伟 王世豪 徐旺旺 田钊 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期1-7,共7页
针对毁伤预测中神经网络超参数设置及调试过程较为复杂的问题,提出一种基于特征选择结合群体智能(feature selection and swarm intelligence algorithm,FS-SIA)的超参数优化方法,用于在毁伤预测中对神经网络进行超参数的搜索和优化。首... 针对毁伤预测中神经网络超参数设置及调试过程较为复杂的问题,提出一种基于特征选择结合群体智能(feature selection and swarm intelligence algorithm,FS-SIA)的超参数优化方法,用于在毁伤预测中对神经网络进行超参数的搜索和优化。首先,通过多种特征排序方法确定毁伤特征的重要性,选取公共的特征偏序子集用于模型训练。其次,针对具体的神经网络模型,分别采用多种群体智能算法进行超参数的搜索和优化。最后,得出特征集性能最优的超参数训练模型。实验结果表明,相较于未经特征排序而单纯采用群体智能算法的其他超参数优化模型,所提方法在毁伤预测中具有更快的收敛速度和更高的准确率。 展开更多
关键词 神经网络 超参数优化 特征选择 群体智能 毁伤预测
在线阅读 下载PDF
基于卷积-长短记忆神经网络的页岩气井短期产量预测与概率性评价
13
作者 郭建春 任文希 +3 位作者 曾凡辉 刘彧轩 段又菁 罗扬 《钻采工艺》 北大核心 2025年第1期130-137,共8页
页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网... 页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网络(CNN)和长短记忆神经网络(LSTM),基于混合式深度学习架构,建立了基于卷积-长短记忆神经网络的页岩气井短期产量预测模型(CNN-LSTM)。CNN-LSTM采用CNN提取高维特征之间的交互作用信息,并利用LSTM提取这些特征的时序信息,实现了交互作用信息和时序信息的融合。生产数据测试表明:CNN-LSTM考虑了生产制度的影响,因此其产量预测精度高于单变量LSTM和多变量LSTM。进一步发展了基于核密度估计理论的产量概率性预测方法,实现了产量预测结果的不确定分析,获得了未来气井产量的变化范围。研究成果有望为页岩气井生产动态分析、产量预测和生产管理提供支撑。 展开更多
关键词 页岩气井 产量预测 神经网络 不确定分析 数据驱动
在线阅读 下载PDF
考虑裂纹分形维数的平行黏结模型细观参数标定的神经网络模型
14
作者 龚囱 戚燕顺 +4 位作者 缪浩杰 肖琦 熊良锋 曾鹏 赵奎 《岩土力学》 北大核心 2025年第1期327-336,共10页
针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面... 针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面裂纹分形维数。在此基础上,建立了以宏观弹性模量、宏观泊松比、峰值强度和裂纹分形维数等4个参数为输入层,黏结弹性模量、黏结法向与切向刚度比、黏结内聚力、黏结内摩擦角、黏结抗拉强度和摩擦系数等6个细观参数为输出层的神经网络模型,对比分析了考虑与不考虑裂纹分形维数时平行黏结模型细观参数标定效果。研究结果表明:(1)所建立的神经网络模型具有较好的收敛速度、预测精度与泛化性能,测试集输出数据与期望值误差约为3.34%。(2)将裂纹分形维数纳入神经网络模型后,数值模拟所得弹性模量、峰值应力与泊松比等宏观参数与室内试验结果的误差小于3.00%,优于不考虑裂纹分形维数标定结果。(3)该方法可定量保障数值模拟所得裂纹不规则性与室内试验结果的一致性,其在一定程度上可视为对现有神经网络模型细观参数标定结果的修正。研究成果可为提高平行黏结模型细观参数标定效果提供新思路。 展开更多
关键词 分形维数 颗粒流 平行黏结模型 参数标定 神经网络
在线阅读 下载PDF
基于图神经网络的地下水位动态模拟模型
15
作者 许明家 孙龙 +1 位作者 李爽 鲁程鹏 《水文》 北大核心 2025年第1期30-36,共7页
地下水位的模拟精度在可持续的地下水资源利用和管理中起着重要的作用。机器学习方法可以捕获输入变量和目标变量之间的非线性关系,在地下水位模拟中得到了广泛的应用。然而,传统的机器学习方法没有考虑站与站之间的空间关系。本文使用... 地下水位的模拟精度在可持续的地下水资源利用和管理中起着重要的作用。机器学习方法可以捕获输入变量和目标变量之间的非线性关系,在地下水位模拟中得到了广泛的应用。然而,传统的机器学习方法没有考虑站与站之间的空间关系。本文使用图神经网络(GNN)模拟地下水位动态变化,以地下水水位监测站为节点,通过邻接矩阵连接节点;选择河北省典型漏斗区的监测数据对模型进行应用和评价。与三个对照模型:随机森林(RF)、支持向量机(SVR)和多层感知机(MLP)相比,所提出的模型在所定义的评估指标方面均表现更好。此外,所提出的模型可同时模拟建模系统中所有监测站的地下水位变化,相比单站模型具有更高的数据利用率。 展开更多
关键词 地下水位模拟 神经网络 非平稳 时间序列
在线阅读 下载PDF
基于混合神经网络参数优化的两相流流型识别方法
16
作者 王萌 张松 +2 位作者 施艳艳 杨珍 史水娥 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期121-127,共7页
针对气液两相流传感器测量数据的强非线性和非平稳性导致流型识别困难的问题,提出一种基于混合神经网络参数优化的流型识别方法.所提方法首先采用滑动窗口法将传感器测得的不同流型电导率数据分割为若干子序列,再利用变分模态分解算法... 针对气液两相流传感器测量数据的强非线性和非平稳性导致流型识别困难的问题,提出一种基于混合神经网络参数优化的流型识别方法.所提方法首先采用滑动窗口法将传感器测得的不同流型电导率数据分割为若干子序列,再利用变分模态分解算法获得各子序列的固有模态函数,通过提取固有模态函数的Hjorth特征数据集实现对各子序列非线性特征的描述.接着,将随机森林算法引入卷积神经网络的分类层,进而构建混合神经网络,并采用鲸鱼算法对混合神经网络中3个超参数进行优化.最后,采用优化后的混合神经网络对Hjorth参数特征向量数据集进行分类,进而实现流型识别.实验结果表明,所提方法对4种流型的平均辨识准确率达到98.52%. 展开更多
关键词 气液两相流 Hjorth参数 混合神经网络 随机森林
在线阅读 下载PDF
基于SA-PSO-BP神经网络的煤层底板破坏深度预测
17
作者 李刚 赵艺鸣 +2 位作者 杨庆贺 才天 邹军鹏 《地下空间与工程学报》 北大核心 2025年第1期293-299,共7页
研究煤层底板破坏深度的准确预测对保证带压开采条件下煤矿的安全生产具有重要意义。针对传统BP神经网络预测底板破坏深度存在误差较大、容易陷入局部最优解、收敛速度慢等问题,提出了一种新的SA-PSO-BP网络模型。该模型以煤层倾角、开... 研究煤层底板破坏深度的准确预测对保证带压开采条件下煤矿的安全生产具有重要意义。针对传统BP神经网络预测底板破坏深度存在误差较大、容易陷入局部最优解、收敛速度慢等问题,提出了一种新的SA-PSO-BP网络模型。该模型以煤层倾角、开采深度、煤层开采厚度、工作面斜长作为评判指标,先利用粒子群优化算法(PSO)改进BP神经网络寻优过程、再引入模拟退火算法(SA)避免PSO算法陷入局部最优解,选取92组现场实测数据样本,对优化后的模型进行训练和预测。结果表明:SA-PSO-BP网络模型的拟合优度达到0.9835,比BP神经网络提高了0.2882;均方根误差达到1.3190,比BP神经网络减小了3.8641;平均绝对百分比误差达到5.4423,比BP神经网络减小了14.93%。构建的SA-PSO-BP网络模型具有可行性,为底板破坏深度的预测提供了一种合理的方法。 展开更多
关键词 带压开采 底板破坏深度 神经网络预测 SA-PSO-BP神经网络
在线阅读 下载PDF
基于NSGA-Ⅱ和神经网络的长短叶片泵双目标参数优化
18
作者 梁兴 马志巍 +2 位作者 熊文龙 周泊 曹寒问 《水电能源科学》 北大核心 2025年第3期163-167,共5页
针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵... 针对长短叶片泵参数优化问题,以叶片进口角、叶片出口角和叶片数量为变量,以泵扬程、效率为优化目标,采用拉丁超立方设计40组试验组成样本集,并利用CFD方法计算泵性能。在数值模拟的基础上,基于BP神经网络泵性能预测模型构建长短叶片泵双目标优化函数,并采用NSGA-Ⅱ算法寻优,进而开展双目标泵参数优化研究。结果表明,基于BP神经网络预测泵性能较准确,其中效率偏差最大为1.98%,扬程偏差最大为1.82%。NSGA-Ⅱ算法所获得的最优方案在额定工况下比原型泵扬程、效率分别提高了7.4%、1.8%;对比优化前后泵内流速分布、压力脉动等,最优方案有效改善了流动的均匀性,减小了水力损失和压力脉动,使得叶轮内部流动更加稳定,为长短叶片泵参数优化设计提供了理论依据。 展开更多
关键词 长短叶片泵 性能优化 神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测
19
作者 杨赫然 张培杰 +2 位作者 孙兴伟 潘飞 刘寅 《中国机械工程》 北大核心 2025年第2期325-332,共8页
为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩... 为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩蔽等预处理后作为训练样本输入SA-CNN模型中。采用SA-CNN模型对磨削后的螺杆转子表面粗糙度值进行预测,并与经典网络ResNet、AlexNet、VGG-16、基础CNN以及图神经网络GNN预测结果进行对比。试验结果表明,SA-CNN模型的平均预测精度达到95.24%,均方根误差(RMSE)为0.0706μm,平均绝对百分比误差(MAPE)为7.4206%,均优于对比网络,且模型收敛较快,表现出较高的精度和良好的鲁棒性。 展开更多
关键词 磨削 表面粗糙度 卷积神经网络 正交试验
在线阅读 下载PDF
多源异质数据下深度神经网络的整合分析及其应用
20
作者 王小燕 冮建伟 +1 位作者 王洁丹 王德青 《统计研究》 北大核心 2025年第2期122-134,共13页
随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMC... 随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMCP惩罚,以识别重要特征以及处理数据的异质性,其中外层MCP识别对多源数据集整体显著的特征;中层MCP识别特征在数据集层面的异质性;内层Lasso识别DNN节点的异质性。这种嵌套设计旨在促进数据集间的信息共享。本文对L_(1)-CMCP进行局部线性近似,再采用近端梯度下降算法进行模型估计。模拟分析表明,IADNN在特征选择和分类预测方面均有良好表现。当多源数据部分异质时,所提方法的F_(1)分数、FPR等评估指标均优于各数据集独立建模和合并建模的方法;在多源数据完全异质或完全同质时,所提方法取得了与理论最佳模型相近的效果。最后,将IADNN应用于不同经济发展水平地区的信用违约数据,发现该模型在风险指标选择和违约预测方面具备有效性。 展开更多
关键词 多源数据 整合分析 深度神经网络 信用评分
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部